Polytope of Type {242,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {242,4}*1936
Also Known As : {242,4|2}. if this polytope has another name.
Group : SmallGroup(1936,31)
Rank : 3
Schlafli Type : {242,4}
Number of vertices, edges, etc : 242, 484, 4
Order of s0s1s2 : 484
Order of s0s1s2s1 : 2
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {242,2}*968
   4-fold quotients : {121,2}*484
   11-fold quotients : {22,4}*176
   22-fold quotients : {22,2}*88
   44-fold quotients : {11,2}*44
   121-fold quotients : {2,4}*16
   242-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2, 11)(  3, 10)(  4,  9)(  5,  8)(  6,  7)( 12,121)( 13,120)( 14,119)
( 15,118)( 16,117)( 17,116)( 18,115)( 19,114)( 20,113)( 21,112)( 22,111)
( 23,110)( 24,109)( 25,108)( 26,107)( 27,106)( 28,105)( 29,104)( 30,103)
( 31,102)( 32,101)( 33,100)( 34, 99)( 35, 98)( 36, 97)( 37, 96)( 38, 95)
( 39, 94)( 40, 93)( 41, 92)( 42, 91)( 43, 90)( 44, 89)( 45, 88)( 46, 87)
( 47, 86)( 48, 85)( 49, 84)( 50, 83)( 51, 82)( 52, 81)( 53, 80)( 54, 79)
( 55, 78)( 56, 77)( 57, 76)( 58, 75)( 59, 74)( 60, 73)( 61, 72)( 62, 71)
( 63, 70)( 64, 69)( 65, 68)( 66, 67)(123,132)(124,131)(125,130)(126,129)
(127,128)(133,242)(134,241)(135,240)(136,239)(137,238)(138,237)(139,236)
(140,235)(141,234)(142,233)(143,232)(144,231)(145,230)(146,229)(147,228)
(148,227)(149,226)(150,225)(151,224)(152,223)(153,222)(154,221)(155,220)
(156,219)(157,218)(158,217)(159,216)(160,215)(161,214)(162,213)(163,212)
(164,211)(165,210)(166,209)(167,208)(168,207)(169,206)(170,205)(171,204)
(172,203)(173,202)(174,201)(175,200)(176,199)(177,198)(178,197)(179,196)
(180,195)(181,194)(182,193)(183,192)(184,191)(185,190)(186,189)(187,188)
(244,253)(245,252)(246,251)(247,250)(248,249)(254,363)(255,362)(256,361)
(257,360)(258,359)(259,358)(260,357)(261,356)(262,355)(263,354)(264,353)
(265,352)(266,351)(267,350)(268,349)(269,348)(270,347)(271,346)(272,345)
(273,344)(274,343)(275,342)(276,341)(277,340)(278,339)(279,338)(280,337)
(281,336)(282,335)(283,334)(284,333)(285,332)(286,331)(287,330)(288,329)
(289,328)(290,327)(291,326)(292,325)(293,324)(294,323)(295,322)(296,321)
(297,320)(298,319)(299,318)(300,317)(301,316)(302,315)(303,314)(304,313)
(305,312)(306,311)(307,310)(308,309)(365,374)(366,373)(367,372)(368,371)
(369,370)(375,484)(376,483)(377,482)(378,481)(379,480)(380,479)(381,478)
(382,477)(383,476)(384,475)(385,474)(386,473)(387,472)(388,471)(389,470)
(390,469)(391,468)(392,467)(393,466)(394,465)(395,464)(396,463)(397,462)
(398,461)(399,460)(400,459)(401,458)(402,457)(403,456)(404,455)(405,454)
(406,453)(407,452)(408,451)(409,450)(410,449)(411,448)(412,447)(413,446)
(414,445)(415,444)(416,443)(417,442)(418,441)(419,440)(420,439)(421,438)
(422,437)(423,436)(424,435)(425,434)(426,433)(427,432)(428,431)(429,430);;
s1 := (  1, 12)(  2, 22)(  3, 21)(  4, 20)(  5, 19)(  6, 18)(  7, 17)(  8, 16)
(  9, 15)( 10, 14)( 11, 13)( 23,121)( 24,120)( 25,119)( 26,118)( 27,117)
( 28,116)( 29,115)( 30,114)( 31,113)( 32,112)( 33,111)( 34,110)( 35,109)
( 36,108)( 37,107)( 38,106)( 39,105)( 40,104)( 41,103)( 42,102)( 43,101)
( 44,100)( 45, 99)( 46, 98)( 47, 97)( 48, 96)( 49, 95)( 50, 94)( 51, 93)
( 52, 92)( 53, 91)( 54, 90)( 55, 89)( 56, 88)( 57, 87)( 58, 86)( 59, 85)
( 60, 84)( 61, 83)( 62, 82)( 63, 81)( 64, 80)( 65, 79)( 66, 78)( 67, 77)
( 68, 76)( 69, 75)( 70, 74)( 71, 73)(122,133)(123,143)(124,142)(125,141)
(126,140)(127,139)(128,138)(129,137)(130,136)(131,135)(132,134)(144,242)
(145,241)(146,240)(147,239)(148,238)(149,237)(150,236)(151,235)(152,234)
(153,233)(154,232)(155,231)(156,230)(157,229)(158,228)(159,227)(160,226)
(161,225)(162,224)(163,223)(164,222)(165,221)(166,220)(167,219)(168,218)
(169,217)(170,216)(171,215)(172,214)(173,213)(174,212)(175,211)(176,210)
(177,209)(178,208)(179,207)(180,206)(181,205)(182,204)(183,203)(184,202)
(185,201)(186,200)(187,199)(188,198)(189,197)(190,196)(191,195)(192,194)
(243,375)(244,385)(245,384)(246,383)(247,382)(248,381)(249,380)(250,379)
(251,378)(252,377)(253,376)(254,364)(255,374)(256,373)(257,372)(258,371)
(259,370)(260,369)(261,368)(262,367)(263,366)(264,365)(265,484)(266,483)
(267,482)(268,481)(269,480)(270,479)(271,478)(272,477)(273,476)(274,475)
(275,474)(276,473)(277,472)(278,471)(279,470)(280,469)(281,468)(282,467)
(283,466)(284,465)(285,464)(286,463)(287,462)(288,461)(289,460)(290,459)
(291,458)(292,457)(293,456)(294,455)(295,454)(296,453)(297,452)(298,451)
(299,450)(300,449)(301,448)(302,447)(303,446)(304,445)(305,444)(306,443)
(307,442)(308,441)(309,440)(310,439)(311,438)(312,437)(313,436)(314,435)
(315,434)(316,433)(317,432)(318,431)(319,430)(320,429)(321,428)(322,427)
(323,426)(324,425)(325,424)(326,423)(327,422)(328,421)(329,420)(330,419)
(331,418)(332,417)(333,416)(334,415)(335,414)(336,413)(337,412)(338,411)
(339,410)(340,409)(341,408)(342,407)(343,406)(344,405)(345,404)(346,403)
(347,402)(348,401)(349,400)(350,399)(351,398)(352,397)(353,396)(354,395)
(355,394)(356,393)(357,392)(358,391)(359,390)(360,389)(361,388)(362,387)
(363,386);;
s2 := (  1,243)(  2,244)(  3,245)(  4,246)(  5,247)(  6,248)(  7,249)(  8,250)
(  9,251)( 10,252)( 11,253)( 12,254)( 13,255)( 14,256)( 15,257)( 16,258)
( 17,259)( 18,260)( 19,261)( 20,262)( 21,263)( 22,264)( 23,265)( 24,266)
( 25,267)( 26,268)( 27,269)( 28,270)( 29,271)( 30,272)( 31,273)( 32,274)
( 33,275)( 34,276)( 35,277)( 36,278)( 37,279)( 38,280)( 39,281)( 40,282)
( 41,283)( 42,284)( 43,285)( 44,286)( 45,287)( 46,288)( 47,289)( 48,290)
( 49,291)( 50,292)( 51,293)( 52,294)( 53,295)( 54,296)( 55,297)( 56,298)
( 57,299)( 58,300)( 59,301)( 60,302)( 61,303)( 62,304)( 63,305)( 64,306)
( 65,307)( 66,308)( 67,309)( 68,310)( 69,311)( 70,312)( 71,313)( 72,314)
( 73,315)( 74,316)( 75,317)( 76,318)( 77,319)( 78,320)( 79,321)( 80,322)
( 81,323)( 82,324)( 83,325)( 84,326)( 85,327)( 86,328)( 87,329)( 88,330)
( 89,331)( 90,332)( 91,333)( 92,334)( 93,335)( 94,336)( 95,337)( 96,338)
( 97,339)( 98,340)( 99,341)(100,342)(101,343)(102,344)(103,345)(104,346)
(105,347)(106,348)(107,349)(108,350)(109,351)(110,352)(111,353)(112,354)
(113,355)(114,356)(115,357)(116,358)(117,359)(118,360)(119,361)(120,362)
(121,363)(122,364)(123,365)(124,366)(125,367)(126,368)(127,369)(128,370)
(129,371)(130,372)(131,373)(132,374)(133,375)(134,376)(135,377)(136,378)
(137,379)(138,380)(139,381)(140,382)(141,383)(142,384)(143,385)(144,386)
(145,387)(146,388)(147,389)(148,390)(149,391)(150,392)(151,393)(152,394)
(153,395)(154,396)(155,397)(156,398)(157,399)(158,400)(159,401)(160,402)
(161,403)(162,404)(163,405)(164,406)(165,407)(166,408)(167,409)(168,410)
(169,411)(170,412)(171,413)(172,414)(173,415)(174,416)(175,417)(176,418)
(177,419)(178,420)(179,421)(180,422)(181,423)(182,424)(183,425)(184,426)
(185,427)(186,428)(187,429)(188,430)(189,431)(190,432)(191,433)(192,434)
(193,435)(194,436)(195,437)(196,438)(197,439)(198,440)(199,441)(200,442)
(201,443)(202,444)(203,445)(204,446)(205,447)(206,448)(207,449)(208,450)
(209,451)(210,452)(211,453)(212,454)(213,455)(214,456)(215,457)(216,458)
(217,459)(218,460)(219,461)(220,462)(221,463)(222,464)(223,465)(224,466)
(225,467)(226,468)(227,469)(228,470)(229,471)(230,472)(231,473)(232,474)
(233,475)(234,476)(235,477)(236,478)(237,479)(238,480)(239,481)(240,482)
(241,483)(242,484);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(484)!(  2, 11)(  3, 10)(  4,  9)(  5,  8)(  6,  7)( 12,121)( 13,120)
( 14,119)( 15,118)( 16,117)( 17,116)( 18,115)( 19,114)( 20,113)( 21,112)
( 22,111)( 23,110)( 24,109)( 25,108)( 26,107)( 27,106)( 28,105)( 29,104)
( 30,103)( 31,102)( 32,101)( 33,100)( 34, 99)( 35, 98)( 36, 97)( 37, 96)
( 38, 95)( 39, 94)( 40, 93)( 41, 92)( 42, 91)( 43, 90)( 44, 89)( 45, 88)
( 46, 87)( 47, 86)( 48, 85)( 49, 84)( 50, 83)( 51, 82)( 52, 81)( 53, 80)
( 54, 79)( 55, 78)( 56, 77)( 57, 76)( 58, 75)( 59, 74)( 60, 73)( 61, 72)
( 62, 71)( 63, 70)( 64, 69)( 65, 68)( 66, 67)(123,132)(124,131)(125,130)
(126,129)(127,128)(133,242)(134,241)(135,240)(136,239)(137,238)(138,237)
(139,236)(140,235)(141,234)(142,233)(143,232)(144,231)(145,230)(146,229)
(147,228)(148,227)(149,226)(150,225)(151,224)(152,223)(153,222)(154,221)
(155,220)(156,219)(157,218)(158,217)(159,216)(160,215)(161,214)(162,213)
(163,212)(164,211)(165,210)(166,209)(167,208)(168,207)(169,206)(170,205)
(171,204)(172,203)(173,202)(174,201)(175,200)(176,199)(177,198)(178,197)
(179,196)(180,195)(181,194)(182,193)(183,192)(184,191)(185,190)(186,189)
(187,188)(244,253)(245,252)(246,251)(247,250)(248,249)(254,363)(255,362)
(256,361)(257,360)(258,359)(259,358)(260,357)(261,356)(262,355)(263,354)
(264,353)(265,352)(266,351)(267,350)(268,349)(269,348)(270,347)(271,346)
(272,345)(273,344)(274,343)(275,342)(276,341)(277,340)(278,339)(279,338)
(280,337)(281,336)(282,335)(283,334)(284,333)(285,332)(286,331)(287,330)
(288,329)(289,328)(290,327)(291,326)(292,325)(293,324)(294,323)(295,322)
(296,321)(297,320)(298,319)(299,318)(300,317)(301,316)(302,315)(303,314)
(304,313)(305,312)(306,311)(307,310)(308,309)(365,374)(366,373)(367,372)
(368,371)(369,370)(375,484)(376,483)(377,482)(378,481)(379,480)(380,479)
(381,478)(382,477)(383,476)(384,475)(385,474)(386,473)(387,472)(388,471)
(389,470)(390,469)(391,468)(392,467)(393,466)(394,465)(395,464)(396,463)
(397,462)(398,461)(399,460)(400,459)(401,458)(402,457)(403,456)(404,455)
(405,454)(406,453)(407,452)(408,451)(409,450)(410,449)(411,448)(412,447)
(413,446)(414,445)(415,444)(416,443)(417,442)(418,441)(419,440)(420,439)
(421,438)(422,437)(423,436)(424,435)(425,434)(426,433)(427,432)(428,431)
(429,430);
s1 := Sym(484)!(  1, 12)(  2, 22)(  3, 21)(  4, 20)(  5, 19)(  6, 18)(  7, 17)
(  8, 16)(  9, 15)( 10, 14)( 11, 13)( 23,121)( 24,120)( 25,119)( 26,118)
( 27,117)( 28,116)( 29,115)( 30,114)( 31,113)( 32,112)( 33,111)( 34,110)
( 35,109)( 36,108)( 37,107)( 38,106)( 39,105)( 40,104)( 41,103)( 42,102)
( 43,101)( 44,100)( 45, 99)( 46, 98)( 47, 97)( 48, 96)( 49, 95)( 50, 94)
( 51, 93)( 52, 92)( 53, 91)( 54, 90)( 55, 89)( 56, 88)( 57, 87)( 58, 86)
( 59, 85)( 60, 84)( 61, 83)( 62, 82)( 63, 81)( 64, 80)( 65, 79)( 66, 78)
( 67, 77)( 68, 76)( 69, 75)( 70, 74)( 71, 73)(122,133)(123,143)(124,142)
(125,141)(126,140)(127,139)(128,138)(129,137)(130,136)(131,135)(132,134)
(144,242)(145,241)(146,240)(147,239)(148,238)(149,237)(150,236)(151,235)
(152,234)(153,233)(154,232)(155,231)(156,230)(157,229)(158,228)(159,227)
(160,226)(161,225)(162,224)(163,223)(164,222)(165,221)(166,220)(167,219)
(168,218)(169,217)(170,216)(171,215)(172,214)(173,213)(174,212)(175,211)
(176,210)(177,209)(178,208)(179,207)(180,206)(181,205)(182,204)(183,203)
(184,202)(185,201)(186,200)(187,199)(188,198)(189,197)(190,196)(191,195)
(192,194)(243,375)(244,385)(245,384)(246,383)(247,382)(248,381)(249,380)
(250,379)(251,378)(252,377)(253,376)(254,364)(255,374)(256,373)(257,372)
(258,371)(259,370)(260,369)(261,368)(262,367)(263,366)(264,365)(265,484)
(266,483)(267,482)(268,481)(269,480)(270,479)(271,478)(272,477)(273,476)
(274,475)(275,474)(276,473)(277,472)(278,471)(279,470)(280,469)(281,468)
(282,467)(283,466)(284,465)(285,464)(286,463)(287,462)(288,461)(289,460)
(290,459)(291,458)(292,457)(293,456)(294,455)(295,454)(296,453)(297,452)
(298,451)(299,450)(300,449)(301,448)(302,447)(303,446)(304,445)(305,444)
(306,443)(307,442)(308,441)(309,440)(310,439)(311,438)(312,437)(313,436)
(314,435)(315,434)(316,433)(317,432)(318,431)(319,430)(320,429)(321,428)
(322,427)(323,426)(324,425)(325,424)(326,423)(327,422)(328,421)(329,420)
(330,419)(331,418)(332,417)(333,416)(334,415)(335,414)(336,413)(337,412)
(338,411)(339,410)(340,409)(341,408)(342,407)(343,406)(344,405)(345,404)
(346,403)(347,402)(348,401)(349,400)(350,399)(351,398)(352,397)(353,396)
(354,395)(355,394)(356,393)(357,392)(358,391)(359,390)(360,389)(361,388)
(362,387)(363,386);
s2 := Sym(484)!(  1,243)(  2,244)(  3,245)(  4,246)(  5,247)(  6,248)(  7,249)
(  8,250)(  9,251)( 10,252)( 11,253)( 12,254)( 13,255)( 14,256)( 15,257)
( 16,258)( 17,259)( 18,260)( 19,261)( 20,262)( 21,263)( 22,264)( 23,265)
( 24,266)( 25,267)( 26,268)( 27,269)( 28,270)( 29,271)( 30,272)( 31,273)
( 32,274)( 33,275)( 34,276)( 35,277)( 36,278)( 37,279)( 38,280)( 39,281)
( 40,282)( 41,283)( 42,284)( 43,285)( 44,286)( 45,287)( 46,288)( 47,289)
( 48,290)( 49,291)( 50,292)( 51,293)( 52,294)( 53,295)( 54,296)( 55,297)
( 56,298)( 57,299)( 58,300)( 59,301)( 60,302)( 61,303)( 62,304)( 63,305)
( 64,306)( 65,307)( 66,308)( 67,309)( 68,310)( 69,311)( 70,312)( 71,313)
( 72,314)( 73,315)( 74,316)( 75,317)( 76,318)( 77,319)( 78,320)( 79,321)
( 80,322)( 81,323)( 82,324)( 83,325)( 84,326)( 85,327)( 86,328)( 87,329)
( 88,330)( 89,331)( 90,332)( 91,333)( 92,334)( 93,335)( 94,336)( 95,337)
( 96,338)( 97,339)( 98,340)( 99,341)(100,342)(101,343)(102,344)(103,345)
(104,346)(105,347)(106,348)(107,349)(108,350)(109,351)(110,352)(111,353)
(112,354)(113,355)(114,356)(115,357)(116,358)(117,359)(118,360)(119,361)
(120,362)(121,363)(122,364)(123,365)(124,366)(125,367)(126,368)(127,369)
(128,370)(129,371)(130,372)(131,373)(132,374)(133,375)(134,376)(135,377)
(136,378)(137,379)(138,380)(139,381)(140,382)(141,383)(142,384)(143,385)
(144,386)(145,387)(146,388)(147,389)(148,390)(149,391)(150,392)(151,393)
(152,394)(153,395)(154,396)(155,397)(156,398)(157,399)(158,400)(159,401)
(160,402)(161,403)(162,404)(163,405)(164,406)(165,407)(166,408)(167,409)
(168,410)(169,411)(170,412)(171,413)(172,414)(173,415)(174,416)(175,417)
(176,418)(177,419)(178,420)(179,421)(180,422)(181,423)(182,424)(183,425)
(184,426)(185,427)(186,428)(187,429)(188,430)(189,431)(190,432)(191,433)
(192,434)(193,435)(194,436)(195,437)(196,438)(197,439)(198,440)(199,441)
(200,442)(201,443)(202,444)(203,445)(204,446)(205,447)(206,448)(207,449)
(208,450)(209,451)(210,452)(211,453)(212,454)(213,455)(214,456)(215,457)
(216,458)(217,459)(218,460)(219,461)(220,462)(221,463)(222,464)(223,465)
(224,466)(225,467)(226,468)(227,469)(228,470)(229,471)(230,472)(231,473)
(232,474)(233,475)(234,476)(235,477)(236,478)(237,479)(238,480)(239,481)
(240,482)(241,483)(242,484);
poly := sub<Sym(484)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope