Polytope of Type {6,6,3}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,6,3}*1944f
if this polytope has a name.
Group : SmallGroup(1944,2344)
Rank : 4
Schlafli Type : {6,6,3}
Number of vertices, edges, etc : 54, 162, 81, 3
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 6
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {6,6,3}*648d
   9-fold quotients : {6,6,3}*216b
   27-fold quotients : {2,6,3}*72, {6,2,3}*72
   54-fold quotients : {3,2,3}*36
   81-fold quotients : {2,2,3}*24
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 4, 7)( 5, 8)( 6, 9)(13,16)(14,17)(15,18)(22,25)(23,26)(24,27)(31,34)
(32,35)(33,36)(40,43)(41,44)(42,45)(49,52)(50,53)(51,54)(58,61)(59,62)(60,63)
(67,70)(68,71)(69,72)(76,79)(77,80)(78,81);;
s1 := ( 2, 3)( 4, 6)( 7, 8)(10,27)(11,26)(12,25)(13,20)(14,19)(15,21)(16,22)
(17,24)(18,23)(29,30)(31,33)(34,35)(37,54)(38,53)(39,52)(40,47)(41,46)(42,48)
(43,49)(44,51)(45,50)(56,57)(58,60)(61,62)(64,81)(65,80)(66,79)(67,74)(68,73)
(69,75)(70,76)(71,78)(72,77);;
s2 := ( 1,10)( 2,12)( 3,11)( 4,16)( 5,18)( 6,17)( 7,13)( 8,15)( 9,14)(20,21)
(22,25)(23,27)(24,26)(28,64)(29,66)(30,65)(31,70)(32,72)(33,71)(34,67)(35,69)
(36,68)(37,55)(38,57)(39,56)(40,61)(41,63)(42,62)(43,58)(44,60)(45,59)(46,73)
(47,75)(48,74)(49,79)(50,81)(51,80)(52,76)(53,78)(54,77);;
s3 := ( 1,28)( 2,30)( 3,29)( 4,34)( 5,36)( 6,35)( 7,31)( 8,33)( 9,32)(10,46)
(11,48)(12,47)(13,52)(14,54)(15,53)(16,49)(17,51)(18,50)(19,37)(20,39)(21,38)
(22,43)(23,45)(24,44)(25,40)(26,42)(27,41)(56,57)(58,61)(59,63)(60,62)(64,73)
(65,75)(66,74)(67,79)(68,81)(69,80)(70,76)(71,78)(72,77);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3*s2*s3, 
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(81)!( 4, 7)( 5, 8)( 6, 9)(13,16)(14,17)(15,18)(22,25)(23,26)(24,27)
(31,34)(32,35)(33,36)(40,43)(41,44)(42,45)(49,52)(50,53)(51,54)(58,61)(59,62)
(60,63)(67,70)(68,71)(69,72)(76,79)(77,80)(78,81);
s1 := Sym(81)!( 2, 3)( 4, 6)( 7, 8)(10,27)(11,26)(12,25)(13,20)(14,19)(15,21)
(16,22)(17,24)(18,23)(29,30)(31,33)(34,35)(37,54)(38,53)(39,52)(40,47)(41,46)
(42,48)(43,49)(44,51)(45,50)(56,57)(58,60)(61,62)(64,81)(65,80)(66,79)(67,74)
(68,73)(69,75)(70,76)(71,78)(72,77);
s2 := Sym(81)!( 1,10)( 2,12)( 3,11)( 4,16)( 5,18)( 6,17)( 7,13)( 8,15)( 9,14)
(20,21)(22,25)(23,27)(24,26)(28,64)(29,66)(30,65)(31,70)(32,72)(33,71)(34,67)
(35,69)(36,68)(37,55)(38,57)(39,56)(40,61)(41,63)(42,62)(43,58)(44,60)(45,59)
(46,73)(47,75)(48,74)(49,79)(50,81)(51,80)(52,76)(53,78)(54,77);
s3 := Sym(81)!( 1,28)( 2,30)( 3,29)( 4,34)( 5,36)( 6,35)( 7,31)( 8,33)( 9,32)
(10,46)(11,48)(12,47)(13,52)(14,54)(15,53)(16,49)(17,51)(18,50)(19,37)(20,39)
(21,38)(22,43)(23,45)(24,44)(25,40)(26,42)(27,41)(56,57)(58,61)(59,63)(60,62)
(64,73)(65,75)(66,74)(67,79)(68,81)(69,80)(70,76)(71,78)(72,77);
poly := sub<Sym(81)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3*s2*s3, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1 >; 
 
References : None.
to this polytope