include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,6,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,6,6}*1944e
if this polytope has a name.
Group : SmallGroup(1944,2344)
Rank : 4
Schlafli Type : {6,6,6}
Number of vertices, edges, etc : 6, 81, 81, 27
Order of s0s1s2s3 : 18
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {2,6,6}*648b, {6,6,6}*648a
9-fold quotients : {2,6,6}*216
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)(37,64)
(38,65)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(46,73)(47,74)(48,75)
(49,76)(50,77)(51,78)(52,79)(53,80)(54,81);;
s1 := ( 1,28)( 2,29)( 3,30)( 4,34)( 5,35)( 6,36)( 7,31)( 8,32)( 9,33)(10,37)
(11,38)(12,39)(13,43)(14,44)(15,45)(16,40)(17,41)(18,42)(19,46)(20,47)(21,48)
(22,52)(23,53)(24,54)(25,49)(26,50)(27,51)(58,61)(59,62)(60,63)(67,70)(68,71)
(69,72)(76,79)(77,80)(78,81);;
s2 := ( 2, 3)( 4, 6)( 7, 8)(10,27)(11,26)(12,25)(13,20)(14,19)(15,21)(16,22)
(17,24)(18,23)(28,55)(29,57)(30,56)(31,60)(32,59)(33,58)(34,62)(35,61)(36,63)
(37,81)(38,80)(39,79)(40,74)(41,73)(42,75)(43,76)(44,78)(45,77)(46,68)(47,67)
(48,69)(49,70)(50,72)(51,71)(52,66)(53,65)(54,64);;
s3 := ( 1,10)( 2,12)( 3,11)( 4,16)( 5,18)( 6,17)( 7,13)( 8,15)( 9,14)(20,21)
(22,25)(23,27)(24,26)(28,37)(29,39)(30,38)(31,43)(32,45)(33,44)(34,40)(35,42)
(36,41)(47,48)(49,52)(50,54)(51,53)(55,64)(56,66)(57,65)(58,70)(59,72)(60,71)
(61,67)(62,69)(63,68)(74,75)(76,79)(77,81)(78,80);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s3*s1*s2*s1*s2,
s2*s3*s2*s1*s2*s1*s2*s3*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(81)!(28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)
(37,64)(38,65)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(46,73)(47,74)
(48,75)(49,76)(50,77)(51,78)(52,79)(53,80)(54,81);
s1 := Sym(81)!( 1,28)( 2,29)( 3,30)( 4,34)( 5,35)( 6,36)( 7,31)( 8,32)( 9,33)
(10,37)(11,38)(12,39)(13,43)(14,44)(15,45)(16,40)(17,41)(18,42)(19,46)(20,47)
(21,48)(22,52)(23,53)(24,54)(25,49)(26,50)(27,51)(58,61)(59,62)(60,63)(67,70)
(68,71)(69,72)(76,79)(77,80)(78,81);
s2 := Sym(81)!( 2, 3)( 4, 6)( 7, 8)(10,27)(11,26)(12,25)(13,20)(14,19)(15,21)
(16,22)(17,24)(18,23)(28,55)(29,57)(30,56)(31,60)(32,59)(33,58)(34,62)(35,61)
(36,63)(37,81)(38,80)(39,79)(40,74)(41,73)(42,75)(43,76)(44,78)(45,77)(46,68)
(47,67)(48,69)(49,70)(50,72)(51,71)(52,66)(53,65)(54,64);
s3 := Sym(81)!( 1,10)( 2,12)( 3,11)( 4,16)( 5,18)( 6,17)( 7,13)( 8,15)( 9,14)
(20,21)(22,25)(23,27)(24,26)(28,37)(29,39)(30,38)(31,43)(32,45)(33,44)(34,40)
(35,42)(36,41)(47,48)(49,52)(50,54)(51,53)(55,64)(56,66)(57,65)(58,70)(59,72)
(60,71)(61,67)(62,69)(63,68)(74,75)(76,79)(77,81)(78,80);
poly := sub<Sym(81)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s3*s1*s2*s1*s2,
s2*s3*s2*s1*s2*s1*s2*s3*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1 >;
References : None.
to this polytope