include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {3,2,6,18}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,6,18}*1944b
if this polytope has a name.
Group : SmallGroup(1944,2345)
Rank : 5
Schlafli Type : {3,2,6,18}
Number of vertices, edges, etc : 3, 3, 9, 81, 27
Order of s0s1s2s3s4 : 9
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {3,2,6,6}*648
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := ( 7,11)( 8,12)( 9,10)(13,22)(14,23)(15,24)(16,29)(17,30)(18,28)(19,27)
(20,25)(21,26)(34,38)(35,39)(36,37)(40,49)(41,50)(42,51)(43,56)(44,57)(45,55)
(46,54)(47,52)(48,53)(61,65)(62,66)(63,64)(67,76)(68,77)(69,78)(70,83)(71,84)
(72,82)(73,81)(74,79)(75,80);;
s3 := ( 4,13)( 5,15)( 6,14)( 7,16)( 8,18)( 9,17)(10,19)(11,21)(12,20)(23,24)
(26,27)(29,30)(31,68)(32,67)(33,69)(34,71)(35,70)(36,72)(37,74)(38,73)(39,75)
(40,59)(41,58)(42,60)(43,62)(44,61)(45,63)(46,65)(47,64)(48,66)(49,77)(50,76)
(51,78)(52,80)(53,79)(54,81)(55,83)(56,82)(57,84);;
s4 := ( 4,31)( 5,33)( 6,32)( 7,37)( 8,39)( 9,38)(10,34)(11,36)(12,35)(13,43)
(14,45)(15,44)(16,40)(17,42)(18,41)(19,46)(20,48)(21,47)(22,56)(23,55)(24,57)
(25,53)(26,52)(27,54)(28,50)(29,49)(30,51)(58,59)(61,65)(62,64)(63,66)(67,71)
(68,70)(69,72)(73,74)(76,84)(77,83)(78,82)(79,81);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s4*s3*s2*s3*s4*s3*s4*s3*s4*s3*s4*s3*s2*s3*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(84)!(2,3);
s1 := Sym(84)!(1,2);
s2 := Sym(84)!( 7,11)( 8,12)( 9,10)(13,22)(14,23)(15,24)(16,29)(17,30)(18,28)
(19,27)(20,25)(21,26)(34,38)(35,39)(36,37)(40,49)(41,50)(42,51)(43,56)(44,57)
(45,55)(46,54)(47,52)(48,53)(61,65)(62,66)(63,64)(67,76)(68,77)(69,78)(70,83)
(71,84)(72,82)(73,81)(74,79)(75,80);
s3 := Sym(84)!( 4,13)( 5,15)( 6,14)( 7,16)( 8,18)( 9,17)(10,19)(11,21)(12,20)
(23,24)(26,27)(29,30)(31,68)(32,67)(33,69)(34,71)(35,70)(36,72)(37,74)(38,73)
(39,75)(40,59)(41,58)(42,60)(43,62)(44,61)(45,63)(46,65)(47,64)(48,66)(49,77)
(50,76)(51,78)(52,80)(53,79)(54,81)(55,83)(56,82)(57,84);
s4 := Sym(84)!( 4,31)( 5,33)( 6,32)( 7,37)( 8,39)( 9,38)(10,34)(11,36)(12,35)
(13,43)(14,45)(15,44)(16,40)(17,42)(18,41)(19,46)(20,48)(21,47)(22,56)(23,55)
(24,57)(25,53)(26,52)(27,54)(28,50)(29,49)(30,51)(58,59)(61,65)(62,64)(63,66)
(67,71)(68,70)(69,72)(73,74)(76,84)(77,83)(78,82)(79,81);
poly := sub<Sym(84)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s4*s3*s2*s3*s4*s3*s4*s3*s4*s3*s4*s3*s2*s3*s2 >;
to this polytope