include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {3,2,3,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,3,6}*1944
if this polytope has a name.
Group : SmallGroup(1944,2346)
Rank : 5
Schlafli Type : {3,2,3,6}
Number of vertices, edges, etc : 3, 3, 27, 81, 54
Order of s0s1s2s3s4 : 18
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {3,2,3,6}*648
9-fold quotients : {3,2,3,6}*216
27-fold quotients : {3,2,3,2}*72
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := ( 5, 6)( 7, 9)(10,11)(13,22)(14,24)(15,23)(16,27)(17,26)(18,25)(19,29)
(20,28)(21,30)(31,60)(32,59)(33,58)(34,62)(35,61)(36,63)(37,64)(38,66)(39,65)
(40,78)(41,77)(42,76)(43,80)(44,79)(45,81)(46,82)(47,84)(48,83)(49,69)(50,68)
(51,67)(52,71)(53,70)(54,72)(55,73)(56,75)(57,74);;
s3 := ( 4,46)( 5,48)( 6,47)( 7,40)( 8,42)( 9,41)(10,43)(11,45)(12,44)(13,34)
(14,36)(15,35)(16,37)(17,39)(18,38)(19,31)(20,33)(21,32)(22,50)(23,49)(24,51)
(25,53)(26,52)(27,54)(28,56)(29,55)(30,57)(58,75)(59,74)(60,73)(61,69)(62,68)
(63,67)(64,72)(65,71)(66,70)(77,78)(80,81)(83,84);;
s4 := ( 7,11)( 8,12)( 9,10)(13,22)(14,23)(15,24)(16,29)(17,30)(18,28)(19,27)
(20,25)(21,26)(34,38)(35,39)(36,37)(40,49)(41,50)(42,51)(43,56)(44,57)(45,55)
(46,54)(47,52)(48,53)(61,65)(62,66)(63,64)(67,76)(68,77)(69,78)(70,83)(71,84)
(72,82)(73,81)(74,79)(75,80);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s4*s2*s3*s4*s3*s4*s2*s3*s4*s3*s4*s2*s3*s4*s3*s4*s2*s3*s4*s3*s4*s2*s3*s4*s3*s4*s2*s3*s4*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(84)!(2,3);
s1 := Sym(84)!(1,2);
s2 := Sym(84)!( 5, 6)( 7, 9)(10,11)(13,22)(14,24)(15,23)(16,27)(17,26)(18,25)
(19,29)(20,28)(21,30)(31,60)(32,59)(33,58)(34,62)(35,61)(36,63)(37,64)(38,66)
(39,65)(40,78)(41,77)(42,76)(43,80)(44,79)(45,81)(46,82)(47,84)(48,83)(49,69)
(50,68)(51,67)(52,71)(53,70)(54,72)(55,73)(56,75)(57,74);
s3 := Sym(84)!( 4,46)( 5,48)( 6,47)( 7,40)( 8,42)( 9,41)(10,43)(11,45)(12,44)
(13,34)(14,36)(15,35)(16,37)(17,39)(18,38)(19,31)(20,33)(21,32)(22,50)(23,49)
(24,51)(25,53)(26,52)(27,54)(28,56)(29,55)(30,57)(58,75)(59,74)(60,73)(61,69)
(62,68)(63,67)(64,72)(65,71)(66,70)(77,78)(80,81)(83,84);
s4 := Sym(84)!( 7,11)( 8,12)( 9,10)(13,22)(14,23)(15,24)(16,29)(17,30)(18,28)
(19,27)(20,25)(21,26)(34,38)(35,39)(36,37)(40,49)(41,50)(42,51)(43,56)(44,57)
(45,55)(46,54)(47,52)(48,53)(61,65)(62,66)(63,64)(67,76)(68,77)(69,78)(70,83)
(71,84)(72,82)(73,81)(74,79)(75,80);
poly := sub<Sym(84)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s4*s2*s3*s4*s3*s4*s2*s3*s4*s3*s4*s2*s3*s4*s3*s4*s2*s3*s4*s3*s4*s2*s3*s4*s3*s4*s2*s3*s4*s3 >;
to this polytope