Polytope of Type {3,6,2,3}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,6,2,3}*1944
if this polytope has a name.
Group : SmallGroup(1944,2346)
Rank : 5
Schlafli Type : {3,6,2,3}
Number of vertices, edges, etc : 27, 81, 54, 3, 3
Order of s0s1s2s3s4 : 18
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {3,6,2,3}*648
   9-fold quotients : {3,6,2,3}*216
   27-fold quotients : {3,2,2,3}*72
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 6)( 7, 8)(10,19)(11,21)(12,20)(13,24)(14,23)(15,22)(16,26)
(17,25)(18,27)(28,57)(29,56)(30,55)(31,59)(32,58)(33,60)(34,61)(35,63)(36,62)
(37,75)(38,74)(39,73)(40,77)(41,76)(42,78)(43,79)(44,81)(45,80)(46,66)(47,65)
(48,64)(49,68)(50,67)(51,69)(52,70)(53,72)(54,71);;
s1 := ( 1,43)( 2,45)( 3,44)( 4,37)( 5,39)( 6,38)( 7,40)( 8,42)( 9,41)(10,31)
(11,33)(12,32)(13,34)(14,36)(15,35)(16,28)(17,30)(18,29)(19,47)(20,46)(21,48)
(22,50)(23,49)(24,51)(25,53)(26,52)(27,54)(55,72)(56,71)(57,70)(58,66)(59,65)
(60,64)(61,69)(62,68)(63,67)(74,75)(77,78)(80,81);;
s2 := ( 4, 8)( 5, 9)( 6, 7)(10,19)(11,20)(12,21)(13,26)(14,27)(15,25)(16,24)
(17,22)(18,23)(31,35)(32,36)(33,34)(37,46)(38,47)(39,48)(40,53)(41,54)(42,52)
(43,51)(44,49)(45,50)(58,62)(59,63)(60,61)(64,73)(65,74)(66,75)(67,80)(68,81)
(69,79)(70,78)(71,76)(72,77);;
s3 := (83,84);;
s4 := (82,83);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s0*s1*s0*s1*s0*s1, s3*s4*s3*s4*s3*s4, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(84)!( 2, 3)( 4, 6)( 7, 8)(10,19)(11,21)(12,20)(13,24)(14,23)(15,22)
(16,26)(17,25)(18,27)(28,57)(29,56)(30,55)(31,59)(32,58)(33,60)(34,61)(35,63)
(36,62)(37,75)(38,74)(39,73)(40,77)(41,76)(42,78)(43,79)(44,81)(45,80)(46,66)
(47,65)(48,64)(49,68)(50,67)(51,69)(52,70)(53,72)(54,71);
s1 := Sym(84)!( 1,43)( 2,45)( 3,44)( 4,37)( 5,39)( 6,38)( 7,40)( 8,42)( 9,41)
(10,31)(11,33)(12,32)(13,34)(14,36)(15,35)(16,28)(17,30)(18,29)(19,47)(20,46)
(21,48)(22,50)(23,49)(24,51)(25,53)(26,52)(27,54)(55,72)(56,71)(57,70)(58,66)
(59,65)(60,64)(61,69)(62,68)(63,67)(74,75)(77,78)(80,81);
s2 := Sym(84)!( 4, 8)( 5, 9)( 6, 7)(10,19)(11,20)(12,21)(13,26)(14,27)(15,25)
(16,24)(17,22)(18,23)(31,35)(32,36)(33,34)(37,46)(38,47)(39,48)(40,53)(41,54)
(42,52)(43,51)(44,49)(45,50)(58,62)(59,63)(60,61)(64,73)(65,74)(66,75)(67,80)
(68,81)(69,79)(70,78)(71,76)(72,77);
s3 := Sym(84)!(83,84);
s4 := Sym(84)!(82,83);
poly := sub<Sym(84)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1, 
s3*s4*s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1 >; 
 

to this polytope