include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {18,12}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {18,12}*1944b
if this polytope has a name.
Group : SmallGroup(1944,804)
Rank : 3
Schlafli Type : {18,12}
Number of vertices, edges, etc : 81, 486, 54
Order of s0s1s2 : 4
Order of s0s1s2s1 : 18
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {18,4}*648
9-fold quotients : {6,12}*216b
27-fold quotients : {6,4}*72
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 7)( 5, 9)( 6, 8)( 11, 12)( 13, 16)( 14, 18)( 15, 17)
( 20, 21)( 22, 25)( 23, 27)( 24, 26)( 28, 78)( 29, 77)( 30, 76)( 31, 75)
( 32, 74)( 33, 73)( 34, 81)( 35, 80)( 36, 79)( 37, 60)( 38, 59)( 39, 58)
( 40, 57)( 41, 56)( 42, 55)( 43, 63)( 44, 62)( 45, 61)( 46, 69)( 47, 68)
( 48, 67)( 49, 66)( 50, 65)( 51, 64)( 52, 72)( 53, 71)( 54, 70)( 82,169)
( 83,171)( 84,170)( 85,166)( 86,168)( 87,167)( 88,163)( 89,165)( 90,164)
( 91,178)( 92,180)( 93,179)( 94,175)( 95,177)( 96,176)( 97,172)( 98,174)
( 99,173)(100,187)(101,189)(102,188)(103,184)(104,186)(105,185)(106,181)
(107,183)(108,182)(109,237)(110,236)(111,235)(112,243)(113,242)(114,241)
(115,240)(116,239)(117,238)(118,219)(119,218)(120,217)(121,225)(122,224)
(123,223)(124,222)(125,221)(126,220)(127,228)(128,227)(129,226)(130,234)
(131,233)(132,232)(133,231)(134,230)(135,229)(136,201)(137,200)(138,199)
(139,207)(140,206)(141,205)(142,204)(143,203)(144,202)(145,210)(146,209)
(147,208)(148,216)(149,215)(150,214)(151,213)(152,212)(153,211)(154,192)
(155,191)(156,190)(157,198)(158,197)(159,196)(160,195)(161,194)(162,193);;
s1 := ( 1, 82)( 2, 86)( 3, 90)( 4, 88)( 5, 83)( 6, 87)( 7, 85)( 8, 89)
( 9, 84)( 10,100)( 11,104)( 12,108)( 13,106)( 14,101)( 15,105)( 16,103)
( 17,107)( 18,102)( 19, 91)( 20, 95)( 21, 99)( 22, 97)( 23, 92)( 24, 96)
( 25, 94)( 26, 98)( 27, 93)( 28,130)( 29,134)( 30,129)( 31,127)( 32,131)
( 33,135)( 34,133)( 35,128)( 36,132)( 37,121)( 38,125)( 39,120)( 40,118)
( 41,122)( 42,126)( 43,124)( 44,119)( 45,123)( 46,112)( 47,116)( 48,111)
( 49,109)( 50,113)( 51,117)( 52,115)( 53,110)( 54,114)( 55,151)( 56,146)
( 57,150)( 58,148)( 59,152)( 60,147)( 61,145)( 62,149)( 63,153)( 64,142)
( 65,137)( 66,141)( 67,139)( 68,143)( 69,138)( 70,136)( 71,140)( 72,144)
( 73,160)( 74,155)( 75,159)( 76,157)( 77,161)( 78,156)( 79,154)( 80,158)
( 81,162)(163,169)(165,168)(167,170)(172,187)(173,182)(174,186)(175,184)
(176,188)(177,183)(178,181)(179,185)(180,189)(190,208)(191,212)(192,216)
(193,214)(194,209)(195,213)(196,211)(197,215)(198,210)(200,203)(201,207)
(202,205)(217,229)(218,233)(219,228)(220,226)(221,230)(222,234)(223,232)
(224,227)(225,231)(235,238)(236,242)(240,243);;
s2 := ( 1, 10)( 2, 12)( 3, 11)( 4, 15)( 5, 14)( 6, 13)( 7, 17)( 8, 16)
( 9, 18)( 20, 21)( 22, 24)( 25, 26)( 28,168)( 29,167)( 30,166)( 31,170)
( 32,169)( 33,171)( 34,163)( 35,165)( 36,164)( 37,186)( 38,185)( 39,184)
( 40,188)( 41,187)( 42,189)( 43,181)( 44,183)( 45,182)( 46,177)( 47,176)
( 48,175)( 49,179)( 50,178)( 51,180)( 52,172)( 53,174)( 54,173)( 55,101)
( 56,100)( 57,102)( 58,103)( 59,105)( 60,104)( 61,108)( 62,107)( 63,106)
( 64, 92)( 65, 91)( 66, 93)( 67, 94)( 68, 96)( 69, 95)( 70, 99)( 71, 98)
( 72, 97)( 73, 83)( 74, 82)( 75, 84)( 76, 85)( 77, 87)( 78, 86)( 79, 90)
( 80, 89)( 81, 88)(109,238)(110,240)(111,239)(112,243)(113,242)(114,241)
(115,236)(116,235)(117,237)(118,229)(119,231)(120,230)(121,234)(122,233)
(123,232)(124,227)(125,226)(126,228)(127,220)(128,222)(129,221)(130,225)
(131,224)(132,223)(133,218)(134,217)(135,219)(136,156)(137,155)(138,154)
(139,158)(140,157)(141,159)(142,160)(143,162)(144,161)(145,147)(148,149)
(152,153)(190,201)(191,200)(192,199)(193,203)(194,202)(195,204)(196,205)
(197,207)(198,206)(208,210)(211,212)(215,216);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1,
s2*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(243)!( 2, 3)( 4, 7)( 5, 9)( 6, 8)( 11, 12)( 13, 16)( 14, 18)
( 15, 17)( 20, 21)( 22, 25)( 23, 27)( 24, 26)( 28, 78)( 29, 77)( 30, 76)
( 31, 75)( 32, 74)( 33, 73)( 34, 81)( 35, 80)( 36, 79)( 37, 60)( 38, 59)
( 39, 58)( 40, 57)( 41, 56)( 42, 55)( 43, 63)( 44, 62)( 45, 61)( 46, 69)
( 47, 68)( 48, 67)( 49, 66)( 50, 65)( 51, 64)( 52, 72)( 53, 71)( 54, 70)
( 82,169)( 83,171)( 84,170)( 85,166)( 86,168)( 87,167)( 88,163)( 89,165)
( 90,164)( 91,178)( 92,180)( 93,179)( 94,175)( 95,177)( 96,176)( 97,172)
( 98,174)( 99,173)(100,187)(101,189)(102,188)(103,184)(104,186)(105,185)
(106,181)(107,183)(108,182)(109,237)(110,236)(111,235)(112,243)(113,242)
(114,241)(115,240)(116,239)(117,238)(118,219)(119,218)(120,217)(121,225)
(122,224)(123,223)(124,222)(125,221)(126,220)(127,228)(128,227)(129,226)
(130,234)(131,233)(132,232)(133,231)(134,230)(135,229)(136,201)(137,200)
(138,199)(139,207)(140,206)(141,205)(142,204)(143,203)(144,202)(145,210)
(146,209)(147,208)(148,216)(149,215)(150,214)(151,213)(152,212)(153,211)
(154,192)(155,191)(156,190)(157,198)(158,197)(159,196)(160,195)(161,194)
(162,193);
s1 := Sym(243)!( 1, 82)( 2, 86)( 3, 90)( 4, 88)( 5, 83)( 6, 87)( 7, 85)
( 8, 89)( 9, 84)( 10,100)( 11,104)( 12,108)( 13,106)( 14,101)( 15,105)
( 16,103)( 17,107)( 18,102)( 19, 91)( 20, 95)( 21, 99)( 22, 97)( 23, 92)
( 24, 96)( 25, 94)( 26, 98)( 27, 93)( 28,130)( 29,134)( 30,129)( 31,127)
( 32,131)( 33,135)( 34,133)( 35,128)( 36,132)( 37,121)( 38,125)( 39,120)
( 40,118)( 41,122)( 42,126)( 43,124)( 44,119)( 45,123)( 46,112)( 47,116)
( 48,111)( 49,109)( 50,113)( 51,117)( 52,115)( 53,110)( 54,114)( 55,151)
( 56,146)( 57,150)( 58,148)( 59,152)( 60,147)( 61,145)( 62,149)( 63,153)
( 64,142)( 65,137)( 66,141)( 67,139)( 68,143)( 69,138)( 70,136)( 71,140)
( 72,144)( 73,160)( 74,155)( 75,159)( 76,157)( 77,161)( 78,156)( 79,154)
( 80,158)( 81,162)(163,169)(165,168)(167,170)(172,187)(173,182)(174,186)
(175,184)(176,188)(177,183)(178,181)(179,185)(180,189)(190,208)(191,212)
(192,216)(193,214)(194,209)(195,213)(196,211)(197,215)(198,210)(200,203)
(201,207)(202,205)(217,229)(218,233)(219,228)(220,226)(221,230)(222,234)
(223,232)(224,227)(225,231)(235,238)(236,242)(240,243);
s2 := Sym(243)!( 1, 10)( 2, 12)( 3, 11)( 4, 15)( 5, 14)( 6, 13)( 7, 17)
( 8, 16)( 9, 18)( 20, 21)( 22, 24)( 25, 26)( 28,168)( 29,167)( 30,166)
( 31,170)( 32,169)( 33,171)( 34,163)( 35,165)( 36,164)( 37,186)( 38,185)
( 39,184)( 40,188)( 41,187)( 42,189)( 43,181)( 44,183)( 45,182)( 46,177)
( 47,176)( 48,175)( 49,179)( 50,178)( 51,180)( 52,172)( 53,174)( 54,173)
( 55,101)( 56,100)( 57,102)( 58,103)( 59,105)( 60,104)( 61,108)( 62,107)
( 63,106)( 64, 92)( 65, 91)( 66, 93)( 67, 94)( 68, 96)( 69, 95)( 70, 99)
( 71, 98)( 72, 97)( 73, 83)( 74, 82)( 75, 84)( 76, 85)( 77, 87)( 78, 86)
( 79, 90)( 80, 89)( 81, 88)(109,238)(110,240)(111,239)(112,243)(113,242)
(114,241)(115,236)(116,235)(117,237)(118,229)(119,231)(120,230)(121,234)
(122,233)(123,232)(124,227)(125,226)(126,228)(127,220)(128,222)(129,221)
(130,225)(131,224)(132,223)(133,218)(134,217)(135,219)(136,156)(137,155)
(138,154)(139,158)(140,157)(141,159)(142,160)(143,162)(144,161)(145,147)
(148,149)(152,153)(190,201)(191,200)(192,199)(193,203)(194,202)(195,204)
(196,205)(197,207)(198,206)(208,210)(211,212)(215,216);
poly := sub<Sym(243)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1,
s2*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1 >;
References : None.
to this polytope