include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {18,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {18,4}*1944b
if this polytope has a name.
Group : SmallGroup(1944,805)
Rank : 3
Schlafli Type : {18,4}
Number of vertices, edges, etc : 243, 486, 54
Order of s0s1s2 : 12
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Skewing Operation
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
9-fold quotients : {6,4}*216
27-fold quotients : {6,4}*72
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 7)( 5, 9)( 6, 8)( 10, 17)( 11, 16)( 12, 18)( 13, 14)
( 19, 24)( 20, 23)( 21, 22)( 25, 27)( 28, 78)( 29, 77)( 30, 76)( 31, 75)
( 32, 74)( 33, 73)( 34, 81)( 35, 80)( 36, 79)( 37, 55)( 38, 57)( 39, 56)
( 40, 61)( 41, 63)( 42, 62)( 43, 58)( 44, 60)( 45, 59)( 46, 71)( 47, 70)
( 48, 72)( 49, 68)( 50, 67)( 51, 69)( 52, 65)( 53, 64)( 54, 66)( 82,163)
( 83,165)( 84,164)( 85,169)( 86,171)( 87,170)( 88,166)( 89,168)( 90,167)
( 91,179)( 92,178)( 93,180)( 94,176)( 95,175)( 96,177)( 97,173)( 98,172)
( 99,174)(100,186)(101,185)(102,184)(103,183)(104,182)(105,181)(106,189)
(107,188)(108,187)(109,240)(110,239)(111,238)(112,237)(113,236)(114,235)
(115,243)(116,242)(117,241)(118,217)(119,219)(120,218)(121,223)(122,225)
(123,224)(124,220)(125,222)(126,221)(127,233)(128,232)(129,234)(130,230)
(131,229)(132,231)(133,227)(134,226)(135,228)(136,199)(137,201)(138,200)
(139,205)(140,207)(141,206)(142,202)(143,204)(144,203)(145,215)(146,214)
(147,216)(148,212)(149,211)(150,213)(151,209)(152,208)(153,210)(154,195)
(155,194)(156,193)(157,192)(158,191)(159,190)(160,198)(161,197)(162,196);;
s1 := ( 1,136)( 2,137)( 3,138)( 4,143)( 5,144)( 6,142)( 7,141)( 8,139)
( 9,140)( 10,154)( 11,155)( 12,156)( 13,161)( 14,162)( 15,160)( 16,159)
( 17,157)( 18,158)( 19,145)( 20,146)( 21,147)( 22,152)( 23,153)( 24,151)
( 25,150)( 26,148)( 27,149)( 28,236)( 29,237)( 30,235)( 31,243)( 32,241)
( 33,242)( 34,238)( 35,239)( 36,240)( 37,227)( 38,228)( 39,226)( 40,234)
( 41,232)( 42,233)( 43,229)( 44,230)( 45,231)( 46,218)( 47,219)( 48,217)
( 49,225)( 50,223)( 51,224)( 52,220)( 53,221)( 54,222)( 55, 72)( 56, 70)
( 57, 71)( 58, 67)( 59, 68)( 60, 69)( 61, 65)( 62, 66)( 63, 64)( 73, 81)
( 74, 79)( 75, 80)( 82, 90)( 83, 88)( 84, 89)( 91,108)( 92,106)( 93,107)
( 94,103)( 95,104)( 96,105)( 97,101)( 98,102)( 99,100)(109,167)(110,168)
(111,166)(112,165)(113,163)(114,164)(115,169)(116,170)(117,171)(118,185)
(119,186)(120,184)(121,183)(122,181)(123,182)(124,187)(125,188)(126,189)
(127,176)(128,177)(129,175)(130,174)(131,172)(132,173)(133,178)(134,179)
(135,180)(190,199)(191,200)(192,201)(193,206)(194,207)(195,205)(196,204)
(197,202)(198,203)(211,215)(212,216)(213,214);;
s2 := ( 2, 5)( 3, 9)( 4, 7)( 10, 24)( 11, 25)( 12, 20)( 13, 21)( 14, 22)
( 15, 26)( 16, 27)( 17, 19)( 18, 23)( 28, 60)( 29, 61)( 30, 56)( 31, 57)
( 32, 58)( 33, 62)( 34, 63)( 35, 55)( 36, 59)( 37, 80)( 38, 75)( 39, 76)
( 40, 77)( 41, 81)( 42, 73)( 43, 74)( 44, 78)( 45, 79)( 46, 64)( 47, 68)
( 48, 72)( 49, 70)( 50, 65)( 51, 69)( 52, 67)( 53, 71)( 54, 66)( 83, 86)
( 84, 90)( 85, 88)( 91,105)( 92,106)( 93,101)( 94,102)( 95,103)( 96,107)
( 97,108)( 98,100)( 99,104)(109,141)(110,142)(111,137)(112,138)(113,139)
(114,143)(115,144)(116,136)(117,140)(118,161)(119,156)(120,157)(121,158)
(122,162)(123,154)(124,155)(125,159)(126,160)(127,145)(128,149)(129,153)
(130,151)(131,146)(132,150)(133,148)(134,152)(135,147)(164,167)(165,171)
(166,169)(172,186)(173,187)(174,182)(175,183)(176,184)(177,188)(178,189)
(179,181)(180,185)(190,222)(191,223)(192,218)(193,219)(194,220)(195,224)
(196,225)(197,217)(198,221)(199,242)(200,237)(201,238)(202,239)(203,243)
(204,235)(205,236)(206,240)(207,241)(208,226)(209,230)(210,234)(211,232)
(212,227)(213,231)(214,229)(215,233)(216,228);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2,
s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(243)!( 2, 3)( 4, 7)( 5, 9)( 6, 8)( 10, 17)( 11, 16)( 12, 18)
( 13, 14)( 19, 24)( 20, 23)( 21, 22)( 25, 27)( 28, 78)( 29, 77)( 30, 76)
( 31, 75)( 32, 74)( 33, 73)( 34, 81)( 35, 80)( 36, 79)( 37, 55)( 38, 57)
( 39, 56)( 40, 61)( 41, 63)( 42, 62)( 43, 58)( 44, 60)( 45, 59)( 46, 71)
( 47, 70)( 48, 72)( 49, 68)( 50, 67)( 51, 69)( 52, 65)( 53, 64)( 54, 66)
( 82,163)( 83,165)( 84,164)( 85,169)( 86,171)( 87,170)( 88,166)( 89,168)
( 90,167)( 91,179)( 92,178)( 93,180)( 94,176)( 95,175)( 96,177)( 97,173)
( 98,172)( 99,174)(100,186)(101,185)(102,184)(103,183)(104,182)(105,181)
(106,189)(107,188)(108,187)(109,240)(110,239)(111,238)(112,237)(113,236)
(114,235)(115,243)(116,242)(117,241)(118,217)(119,219)(120,218)(121,223)
(122,225)(123,224)(124,220)(125,222)(126,221)(127,233)(128,232)(129,234)
(130,230)(131,229)(132,231)(133,227)(134,226)(135,228)(136,199)(137,201)
(138,200)(139,205)(140,207)(141,206)(142,202)(143,204)(144,203)(145,215)
(146,214)(147,216)(148,212)(149,211)(150,213)(151,209)(152,208)(153,210)
(154,195)(155,194)(156,193)(157,192)(158,191)(159,190)(160,198)(161,197)
(162,196);
s1 := Sym(243)!( 1,136)( 2,137)( 3,138)( 4,143)( 5,144)( 6,142)( 7,141)
( 8,139)( 9,140)( 10,154)( 11,155)( 12,156)( 13,161)( 14,162)( 15,160)
( 16,159)( 17,157)( 18,158)( 19,145)( 20,146)( 21,147)( 22,152)( 23,153)
( 24,151)( 25,150)( 26,148)( 27,149)( 28,236)( 29,237)( 30,235)( 31,243)
( 32,241)( 33,242)( 34,238)( 35,239)( 36,240)( 37,227)( 38,228)( 39,226)
( 40,234)( 41,232)( 42,233)( 43,229)( 44,230)( 45,231)( 46,218)( 47,219)
( 48,217)( 49,225)( 50,223)( 51,224)( 52,220)( 53,221)( 54,222)( 55, 72)
( 56, 70)( 57, 71)( 58, 67)( 59, 68)( 60, 69)( 61, 65)( 62, 66)( 63, 64)
( 73, 81)( 74, 79)( 75, 80)( 82, 90)( 83, 88)( 84, 89)( 91,108)( 92,106)
( 93,107)( 94,103)( 95,104)( 96,105)( 97,101)( 98,102)( 99,100)(109,167)
(110,168)(111,166)(112,165)(113,163)(114,164)(115,169)(116,170)(117,171)
(118,185)(119,186)(120,184)(121,183)(122,181)(123,182)(124,187)(125,188)
(126,189)(127,176)(128,177)(129,175)(130,174)(131,172)(132,173)(133,178)
(134,179)(135,180)(190,199)(191,200)(192,201)(193,206)(194,207)(195,205)
(196,204)(197,202)(198,203)(211,215)(212,216)(213,214);
s2 := Sym(243)!( 2, 5)( 3, 9)( 4, 7)( 10, 24)( 11, 25)( 12, 20)( 13, 21)
( 14, 22)( 15, 26)( 16, 27)( 17, 19)( 18, 23)( 28, 60)( 29, 61)( 30, 56)
( 31, 57)( 32, 58)( 33, 62)( 34, 63)( 35, 55)( 36, 59)( 37, 80)( 38, 75)
( 39, 76)( 40, 77)( 41, 81)( 42, 73)( 43, 74)( 44, 78)( 45, 79)( 46, 64)
( 47, 68)( 48, 72)( 49, 70)( 50, 65)( 51, 69)( 52, 67)( 53, 71)( 54, 66)
( 83, 86)( 84, 90)( 85, 88)( 91,105)( 92,106)( 93,101)( 94,102)( 95,103)
( 96,107)( 97,108)( 98,100)( 99,104)(109,141)(110,142)(111,137)(112,138)
(113,139)(114,143)(115,144)(116,136)(117,140)(118,161)(119,156)(120,157)
(121,158)(122,162)(123,154)(124,155)(125,159)(126,160)(127,145)(128,149)
(129,153)(130,151)(131,146)(132,150)(133,148)(134,152)(135,147)(164,167)
(165,171)(166,169)(172,186)(173,187)(174,182)(175,183)(176,184)(177,188)
(178,189)(179,181)(180,185)(190,222)(191,223)(192,218)(193,219)(194,220)
(195,224)(196,225)(197,217)(198,221)(199,242)(200,237)(201,238)(202,239)
(203,243)(204,235)(205,236)(206,240)(207,241)(208,226)(209,230)(210,234)
(211,232)(212,227)(213,231)(214,229)(215,233)(216,228);
poly := sub<Sym(243)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2,
s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope