Polytope of Type {12,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,4}*1944d
if this polytope has a name.
Group : SmallGroup(1944,806)
Rank : 3
Schlafli Type : {12,4}
Number of vertices, edges, etc : 243, 486, 81
Order of s0s1s2 : 18
Order of s0s1s2s1 : 9
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
   Skewing Operation
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   9-fold quotients : {12,4}*216
   27-fold quotients : {4,4}*72
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  9)(  3,  5)(  6,  8)( 10, 19)( 11, 27)( 12, 23)( 13, 22)( 14, 21)
( 15, 26)( 16, 25)( 17, 24)( 18, 20)( 28, 42)( 29, 38)( 30, 43)( 31, 45)
( 32, 41)( 33, 37)( 34, 39)( 35, 44)( 36, 40)( 46, 51)( 48, 52)( 49, 54)
( 55, 73)( 56, 81)( 57, 77)( 58, 76)( 59, 75)( 60, 80)( 61, 79)( 62, 78)
( 63, 74)( 65, 72)( 66, 68)( 69, 71)( 82,168)( 83,164)( 84,169)( 85,171)
( 86,167)( 87,163)( 88,165)( 89,170)( 90,166)( 91,186)( 92,182)( 93,187)
( 94,189)( 95,185)( 96,181)( 97,183)( 98,188)( 99,184)(100,177)(101,173)
(102,178)(103,180)(104,176)(105,172)(106,174)(107,179)(108,175)(109,206)
(110,202)(111,201)(112,200)(113,205)(114,204)(115,203)(116,199)(117,207)
(118,197)(119,193)(120,192)(121,191)(122,196)(123,195)(124,194)(125,190)
(126,198)(127,215)(128,211)(129,210)(130,209)(131,214)(132,213)(133,212)
(134,208)(135,216)(136,240)(137,236)(138,241)(139,243)(140,239)(141,235)
(142,237)(143,242)(144,238)(145,231)(146,227)(147,232)(148,234)(149,230)
(150,226)(151,228)(152,233)(153,229)(154,222)(155,218)(156,223)(157,225)
(158,221)(159,217)(160,219)(161,224)(162,220);;
s1 := (  1, 13)(  2, 15)(  3, 14)(  4, 18)(  5, 17)(  6, 16)(  7, 11)(  8, 10)
(  9, 12)( 19, 21)( 22, 23)( 26, 27)( 28,166)( 29,168)( 30,167)( 31,171)
( 32,170)( 33,169)( 34,164)( 35,163)( 36,165)( 37,188)( 38,187)( 39,189)
( 40,181)( 41,183)( 42,182)( 43,186)( 44,185)( 45,184)( 46,174)( 47,173)
( 48,172)( 49,176)( 50,175)( 51,177)( 52,178)( 53,180)( 54,179)( 55,104)
( 56,103)( 57,105)( 58,106)( 59,108)( 60,107)( 61,102)( 62,101)( 63,100)
( 64, 99)( 65, 98)( 66, 97)( 67, 92)( 68, 91)( 69, 93)( 70, 94)( 71, 96)
( 72, 95)( 73, 82)( 74, 84)( 75, 83)( 76, 87)( 77, 86)( 78, 85)( 79, 89)
( 80, 88)( 81, 90)(109,236)(110,235)(111,237)(112,238)(113,240)(114,239)
(115,243)(116,242)(117,241)(118,231)(119,230)(120,229)(121,233)(122,232)
(123,234)(124,226)(125,228)(126,227)(127,223)(128,225)(129,224)(130,219)
(131,218)(132,217)(133,221)(134,220)(135,222)(136,160)(137,162)(138,161)
(139,156)(140,155)(141,154)(142,158)(143,157)(144,159)(145,146)(149,150)
(151,153)(190,203)(191,202)(192,204)(193,205)(194,207)(195,206)(196,201)
(197,200)(198,199)(209,210)(211,213)(214,215);;
s2 := (  1, 64)(  2, 68)(  3, 72)(  4, 70)(  5, 65)(  6, 69)(  7, 67)(  8, 71)
(  9, 66)( 10, 62)( 11, 57)( 12, 58)( 13, 59)( 14, 63)( 15, 55)( 16, 56)
( 17, 60)( 18, 61)( 19, 78)( 20, 79)( 21, 74)( 22, 75)( 23, 76)( 24, 80)
( 25, 81)( 26, 73)( 27, 77)( 28, 44)( 29, 39)( 30, 40)( 31, 41)( 32, 45)
( 33, 37)( 34, 38)( 35, 42)( 36, 43)( 47, 50)( 48, 54)( 49, 52)( 82,145)
( 83,149)( 84,153)( 85,151)( 86,146)( 87,150)( 88,148)( 89,152)( 90,147)
( 91,143)( 92,138)( 93,139)( 94,140)( 95,144)( 96,136)( 97,137)( 98,141)
( 99,142)(100,159)(101,160)(102,155)(103,156)(104,157)(105,161)(106,162)
(107,154)(108,158)(109,125)(110,120)(111,121)(112,122)(113,126)(114,118)
(115,119)(116,123)(117,124)(128,131)(129,135)(130,133)(163,226)(164,230)
(165,234)(166,232)(167,227)(168,231)(169,229)(170,233)(171,228)(172,224)
(173,219)(174,220)(175,221)(176,225)(177,217)(178,218)(179,222)(180,223)
(181,240)(182,241)(183,236)(184,237)(185,238)(186,242)(187,243)(188,235)
(189,239)(190,206)(191,201)(192,202)(193,203)(194,207)(195,199)(196,200)
(197,204)(198,205)(209,212)(210,216)(211,214);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(243)!(  2,  9)(  3,  5)(  6,  8)( 10, 19)( 11, 27)( 12, 23)( 13, 22)
( 14, 21)( 15, 26)( 16, 25)( 17, 24)( 18, 20)( 28, 42)( 29, 38)( 30, 43)
( 31, 45)( 32, 41)( 33, 37)( 34, 39)( 35, 44)( 36, 40)( 46, 51)( 48, 52)
( 49, 54)( 55, 73)( 56, 81)( 57, 77)( 58, 76)( 59, 75)( 60, 80)( 61, 79)
( 62, 78)( 63, 74)( 65, 72)( 66, 68)( 69, 71)( 82,168)( 83,164)( 84,169)
( 85,171)( 86,167)( 87,163)( 88,165)( 89,170)( 90,166)( 91,186)( 92,182)
( 93,187)( 94,189)( 95,185)( 96,181)( 97,183)( 98,188)( 99,184)(100,177)
(101,173)(102,178)(103,180)(104,176)(105,172)(106,174)(107,179)(108,175)
(109,206)(110,202)(111,201)(112,200)(113,205)(114,204)(115,203)(116,199)
(117,207)(118,197)(119,193)(120,192)(121,191)(122,196)(123,195)(124,194)
(125,190)(126,198)(127,215)(128,211)(129,210)(130,209)(131,214)(132,213)
(133,212)(134,208)(135,216)(136,240)(137,236)(138,241)(139,243)(140,239)
(141,235)(142,237)(143,242)(144,238)(145,231)(146,227)(147,232)(148,234)
(149,230)(150,226)(151,228)(152,233)(153,229)(154,222)(155,218)(156,223)
(157,225)(158,221)(159,217)(160,219)(161,224)(162,220);
s1 := Sym(243)!(  1, 13)(  2, 15)(  3, 14)(  4, 18)(  5, 17)(  6, 16)(  7, 11)
(  8, 10)(  9, 12)( 19, 21)( 22, 23)( 26, 27)( 28,166)( 29,168)( 30,167)
( 31,171)( 32,170)( 33,169)( 34,164)( 35,163)( 36,165)( 37,188)( 38,187)
( 39,189)( 40,181)( 41,183)( 42,182)( 43,186)( 44,185)( 45,184)( 46,174)
( 47,173)( 48,172)( 49,176)( 50,175)( 51,177)( 52,178)( 53,180)( 54,179)
( 55,104)( 56,103)( 57,105)( 58,106)( 59,108)( 60,107)( 61,102)( 62,101)
( 63,100)( 64, 99)( 65, 98)( 66, 97)( 67, 92)( 68, 91)( 69, 93)( 70, 94)
( 71, 96)( 72, 95)( 73, 82)( 74, 84)( 75, 83)( 76, 87)( 77, 86)( 78, 85)
( 79, 89)( 80, 88)( 81, 90)(109,236)(110,235)(111,237)(112,238)(113,240)
(114,239)(115,243)(116,242)(117,241)(118,231)(119,230)(120,229)(121,233)
(122,232)(123,234)(124,226)(125,228)(126,227)(127,223)(128,225)(129,224)
(130,219)(131,218)(132,217)(133,221)(134,220)(135,222)(136,160)(137,162)
(138,161)(139,156)(140,155)(141,154)(142,158)(143,157)(144,159)(145,146)
(149,150)(151,153)(190,203)(191,202)(192,204)(193,205)(194,207)(195,206)
(196,201)(197,200)(198,199)(209,210)(211,213)(214,215);
s2 := Sym(243)!(  1, 64)(  2, 68)(  3, 72)(  4, 70)(  5, 65)(  6, 69)(  7, 67)
(  8, 71)(  9, 66)( 10, 62)( 11, 57)( 12, 58)( 13, 59)( 14, 63)( 15, 55)
( 16, 56)( 17, 60)( 18, 61)( 19, 78)( 20, 79)( 21, 74)( 22, 75)( 23, 76)
( 24, 80)( 25, 81)( 26, 73)( 27, 77)( 28, 44)( 29, 39)( 30, 40)( 31, 41)
( 32, 45)( 33, 37)( 34, 38)( 35, 42)( 36, 43)( 47, 50)( 48, 54)( 49, 52)
( 82,145)( 83,149)( 84,153)( 85,151)( 86,146)( 87,150)( 88,148)( 89,152)
( 90,147)( 91,143)( 92,138)( 93,139)( 94,140)( 95,144)( 96,136)( 97,137)
( 98,141)( 99,142)(100,159)(101,160)(102,155)(103,156)(104,157)(105,161)
(106,162)(107,154)(108,158)(109,125)(110,120)(111,121)(112,122)(113,126)
(114,118)(115,119)(116,123)(117,124)(128,131)(129,135)(130,133)(163,226)
(164,230)(165,234)(166,232)(167,227)(168,231)(169,229)(170,233)(171,228)
(172,224)(173,219)(174,220)(175,221)(176,225)(177,217)(178,218)(179,222)
(180,223)(181,240)(182,241)(183,236)(184,237)(185,238)(186,242)(187,243)
(188,235)(189,239)(190,206)(191,201)(192,202)(193,203)(194,207)(195,199)
(196,200)(197,204)(198,205)(209,212)(210,216)(211,214);
poly := sub<Sym(243)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope