include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {18,12}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {18,12}*1944e
if this polytope has a name.
Group : SmallGroup(1944,806)
Rank : 3
Schlafli Type : {18,12}
Number of vertices, edges, etc : 81, 486, 54
Order of s0s1s2 : 12
Order of s0s1s2s1 : 18
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
9-fold quotients : {6,12}*216a
27-fold quotients : {6,4}*72
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 7)( 5, 9)( 6, 8)( 10, 17)( 11, 16)( 12, 18)( 13, 14)
( 19, 24)( 20, 23)( 21, 22)( 25, 27)( 28, 75)( 29, 74)( 30, 73)( 31, 81)
( 32, 80)( 33, 79)( 34, 78)( 35, 77)( 36, 76)( 37, 61)( 38, 63)( 39, 62)
( 40, 58)( 41, 60)( 42, 59)( 43, 55)( 44, 57)( 45, 56)( 46, 68)( 47, 67)
( 48, 69)( 49, 65)( 50, 64)( 51, 66)( 52, 71)( 53, 70)( 54, 72)( 82,168)
( 83,167)( 84,166)( 85,165)( 86,164)( 87,163)( 88,171)( 89,170)( 90,169)
( 91,172)( 92,174)( 93,173)( 94,178)( 95,180)( 96,179)( 97,175)( 98,177)
( 99,176)(100,188)(101,187)(102,189)(103,185)(104,184)(105,186)(106,182)
(107,181)(108,183)(109,239)(110,238)(111,240)(112,236)(113,235)(114,237)
(115,242)(116,241)(117,243)(118,219)(119,218)(120,217)(121,225)(122,224)
(123,223)(124,222)(125,221)(126,220)(127,232)(128,234)(129,233)(130,229)
(131,231)(132,230)(133,226)(134,228)(135,227)(136,201)(137,200)(138,199)
(139,207)(140,206)(141,205)(142,204)(143,203)(144,202)(145,214)(146,216)
(147,215)(148,211)(149,213)(150,212)(151,208)(152,210)(153,209)(154,194)
(155,193)(156,195)(157,191)(158,190)(159,192)(160,197)(161,196)(162,198);;
s1 := ( 1, 82)( 2, 90)( 3, 86)( 4, 85)( 5, 84)( 6, 89)( 7, 88)( 8, 87)
( 9, 83)( 10,106)( 11,105)( 12,101)( 13,100)( 14,108)( 15,104)( 16,103)
( 17,102)( 18,107)( 19, 94)( 20, 93)( 21, 98)( 22, 97)( 23, 96)( 24, 92)
( 25, 91)( 26, 99)( 27, 95)( 28,135)( 29,131)( 30,127)( 31,129)( 32,134)
( 33,130)( 34,132)( 35,128)( 36,133)( 37,123)( 38,119)( 39,124)( 40,126)
( 41,122)( 42,118)( 43,120)( 44,125)( 45,121)( 46,111)( 47,116)( 48,112)
( 49,114)( 50,110)( 51,115)( 52,117)( 53,113)( 54,109)( 55,147)( 56,152)
( 57,148)( 58,150)( 59,146)( 60,151)( 61,153)( 62,149)( 63,145)( 64,144)
( 65,140)( 66,136)( 67,138)( 68,143)( 69,139)( 70,141)( 71,137)( 72,142)
( 73,159)( 74,155)( 75,160)( 76,162)( 77,158)( 78,154)( 79,156)( 80,161)
( 81,157)(163,168)(165,169)(166,171)(172,183)(173,188)(174,184)(175,186)
(176,182)(177,187)(178,189)(179,185)(180,181)(190,209)(191,214)(192,213)
(193,212)(194,208)(195,216)(196,215)(197,211)(198,210)(199,206)(200,202)
(203,205)(217,230)(218,226)(219,234)(220,233)(221,229)(222,228)(223,227)
(224,232)(225,231)(235,242)(236,238)(239,241);;
s2 := ( 2, 3)( 4, 6)( 7, 8)( 10, 23)( 11, 22)( 12, 24)( 13, 25)( 14, 27)
( 15, 26)( 16, 21)( 17, 20)( 18, 19)( 28,181)( 29,183)( 30,182)( 31,186)
( 32,185)( 33,184)( 34,188)( 35,187)( 36,189)( 37,176)( 38,175)( 39,177)
( 40,178)( 41,180)( 42,179)( 43,174)( 44,173)( 45,172)( 46,171)( 47,170)
( 48,169)( 49,164)( 50,163)( 51,165)( 52,166)( 53,168)( 54,167)( 55, 92)
( 56, 91)( 57, 93)( 58, 94)( 59, 96)( 60, 95)( 61, 99)( 62, 98)( 63, 97)
( 64, 87)( 65, 86)( 66, 85)( 67, 89)( 68, 88)( 69, 90)( 70, 82)( 71, 84)
( 72, 83)( 73,106)( 74,108)( 75,107)( 76,102)( 77,101)( 78,100)( 79,104)
( 80,103)( 81,105)(109,233)(110,232)(111,234)(112,226)(113,228)(114,227)
(115,231)(116,230)(117,229)(118,219)(119,218)(120,217)(121,221)(122,220)
(123,222)(124,223)(125,225)(126,224)(127,238)(128,240)(129,239)(130,243)
(131,242)(132,241)(133,236)(134,235)(135,237)(136,148)(137,150)(138,149)
(139,153)(140,152)(141,151)(142,146)(143,145)(144,147)(154,156)(157,158)
(161,162)(190,191)(194,195)(196,198)(199,213)(200,212)(201,211)(202,215)
(203,214)(204,216)(205,208)(206,210)(207,209);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s2*s1*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1*s0*s1,
s0*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s0*s2*s1*s0*s1*s0*s2*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(243)!( 2, 3)( 4, 7)( 5, 9)( 6, 8)( 10, 17)( 11, 16)( 12, 18)
( 13, 14)( 19, 24)( 20, 23)( 21, 22)( 25, 27)( 28, 75)( 29, 74)( 30, 73)
( 31, 81)( 32, 80)( 33, 79)( 34, 78)( 35, 77)( 36, 76)( 37, 61)( 38, 63)
( 39, 62)( 40, 58)( 41, 60)( 42, 59)( 43, 55)( 44, 57)( 45, 56)( 46, 68)
( 47, 67)( 48, 69)( 49, 65)( 50, 64)( 51, 66)( 52, 71)( 53, 70)( 54, 72)
( 82,168)( 83,167)( 84,166)( 85,165)( 86,164)( 87,163)( 88,171)( 89,170)
( 90,169)( 91,172)( 92,174)( 93,173)( 94,178)( 95,180)( 96,179)( 97,175)
( 98,177)( 99,176)(100,188)(101,187)(102,189)(103,185)(104,184)(105,186)
(106,182)(107,181)(108,183)(109,239)(110,238)(111,240)(112,236)(113,235)
(114,237)(115,242)(116,241)(117,243)(118,219)(119,218)(120,217)(121,225)
(122,224)(123,223)(124,222)(125,221)(126,220)(127,232)(128,234)(129,233)
(130,229)(131,231)(132,230)(133,226)(134,228)(135,227)(136,201)(137,200)
(138,199)(139,207)(140,206)(141,205)(142,204)(143,203)(144,202)(145,214)
(146,216)(147,215)(148,211)(149,213)(150,212)(151,208)(152,210)(153,209)
(154,194)(155,193)(156,195)(157,191)(158,190)(159,192)(160,197)(161,196)
(162,198);
s1 := Sym(243)!( 1, 82)( 2, 90)( 3, 86)( 4, 85)( 5, 84)( 6, 89)( 7, 88)
( 8, 87)( 9, 83)( 10,106)( 11,105)( 12,101)( 13,100)( 14,108)( 15,104)
( 16,103)( 17,102)( 18,107)( 19, 94)( 20, 93)( 21, 98)( 22, 97)( 23, 96)
( 24, 92)( 25, 91)( 26, 99)( 27, 95)( 28,135)( 29,131)( 30,127)( 31,129)
( 32,134)( 33,130)( 34,132)( 35,128)( 36,133)( 37,123)( 38,119)( 39,124)
( 40,126)( 41,122)( 42,118)( 43,120)( 44,125)( 45,121)( 46,111)( 47,116)
( 48,112)( 49,114)( 50,110)( 51,115)( 52,117)( 53,113)( 54,109)( 55,147)
( 56,152)( 57,148)( 58,150)( 59,146)( 60,151)( 61,153)( 62,149)( 63,145)
( 64,144)( 65,140)( 66,136)( 67,138)( 68,143)( 69,139)( 70,141)( 71,137)
( 72,142)( 73,159)( 74,155)( 75,160)( 76,162)( 77,158)( 78,154)( 79,156)
( 80,161)( 81,157)(163,168)(165,169)(166,171)(172,183)(173,188)(174,184)
(175,186)(176,182)(177,187)(178,189)(179,185)(180,181)(190,209)(191,214)
(192,213)(193,212)(194,208)(195,216)(196,215)(197,211)(198,210)(199,206)
(200,202)(203,205)(217,230)(218,226)(219,234)(220,233)(221,229)(222,228)
(223,227)(224,232)(225,231)(235,242)(236,238)(239,241);
s2 := Sym(243)!( 2, 3)( 4, 6)( 7, 8)( 10, 23)( 11, 22)( 12, 24)( 13, 25)
( 14, 27)( 15, 26)( 16, 21)( 17, 20)( 18, 19)( 28,181)( 29,183)( 30,182)
( 31,186)( 32,185)( 33,184)( 34,188)( 35,187)( 36,189)( 37,176)( 38,175)
( 39,177)( 40,178)( 41,180)( 42,179)( 43,174)( 44,173)( 45,172)( 46,171)
( 47,170)( 48,169)( 49,164)( 50,163)( 51,165)( 52,166)( 53,168)( 54,167)
( 55, 92)( 56, 91)( 57, 93)( 58, 94)( 59, 96)( 60, 95)( 61, 99)( 62, 98)
( 63, 97)( 64, 87)( 65, 86)( 66, 85)( 67, 89)( 68, 88)( 69, 90)( 70, 82)
( 71, 84)( 72, 83)( 73,106)( 74,108)( 75,107)( 76,102)( 77,101)( 78,100)
( 79,104)( 80,103)( 81,105)(109,233)(110,232)(111,234)(112,226)(113,228)
(114,227)(115,231)(116,230)(117,229)(118,219)(119,218)(120,217)(121,221)
(122,220)(123,222)(124,223)(125,225)(126,224)(127,238)(128,240)(129,239)
(130,243)(131,242)(132,241)(133,236)(134,235)(135,237)(136,148)(137,150)
(138,149)(139,153)(140,152)(141,151)(142,146)(143,145)(144,147)(154,156)
(157,158)(161,162)(190,191)(194,195)(196,198)(199,213)(200,212)(201,211)
(202,215)(203,214)(204,216)(205,208)(206,210)(207,209);
poly := sub<Sym(243)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s2*s1*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1*s0*s1,
s0*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s0*s2*s1*s0*s1*s0*s2*s1*s0*s1 >;
References : None.
to this polytope