include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {9,6,3,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {9,6,3,2}*1944a
if this polytope has a name.
Group : SmallGroup(1944,949)
Rank : 5
Schlafli Type : {9,6,3,2}
Number of vertices, edges, etc : 27, 81, 27, 3, 2
Order of s0s1s2s3s4 : 18
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {9,6,3,2}*648, {3,6,3,2}*648b
9-fold quotients : {9,2,3,2}*216, {3,6,3,2}*216
27-fold quotients : {3,2,3,2}*72
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 4, 8)( 5, 9)( 6, 7)( 10, 19)( 11, 20)( 12, 21)( 13, 26)( 14, 27)
( 15, 25)( 16, 24)( 17, 22)( 18, 23)( 31, 35)( 32, 36)( 33, 34)( 37, 46)
( 38, 47)( 39, 48)( 40, 53)( 41, 54)( 42, 52)( 43, 51)( 44, 49)( 45, 50)
( 58, 62)( 59, 63)( 60, 61)( 64, 73)( 65, 74)( 66, 75)( 67, 80)( 68, 81)
( 69, 79)( 70, 78)( 71, 76)( 72, 77)( 82,181)( 83,182)( 84,183)( 85,188)
( 86,189)( 87,187)( 88,186)( 89,184)( 90,185)( 91,172)( 92,173)( 93,174)
( 94,179)( 95,180)( 96,178)( 97,177)( 98,175)( 99,176)(100,163)(101,164)
(102,165)(103,170)(104,171)(105,169)(106,168)(107,166)(108,167)(109,208)
(110,209)(111,210)(112,215)(113,216)(114,214)(115,213)(116,211)(117,212)
(118,199)(119,200)(120,201)(121,206)(122,207)(123,205)(124,204)(125,202)
(126,203)(127,190)(128,191)(129,192)(130,197)(131,198)(132,196)(133,195)
(134,193)(135,194)(136,235)(137,236)(138,237)(139,242)(140,243)(141,241)
(142,240)(143,238)(144,239)(145,226)(146,227)(147,228)(148,233)(149,234)
(150,232)(151,231)(152,229)(153,230)(154,217)(155,218)(156,219)(157,224)
(158,225)(159,223)(160,222)(161,220)(162,221);;
s1 := ( 1, 82)( 2, 83)( 3, 84)( 4, 88)( 5, 89)( 6, 90)( 7, 85)( 8, 86)
( 9, 87)( 10,100)( 11,101)( 12,102)( 13,106)( 14,107)( 15,108)( 16,103)
( 17,104)( 18,105)( 19, 91)( 20, 92)( 21, 93)( 22, 97)( 23, 98)( 24, 99)
( 25, 94)( 26, 95)( 27, 96)( 28,112)( 29,113)( 30,114)( 31,109)( 32,110)
( 33,111)( 34,115)( 35,116)( 36,117)( 37,130)( 38,131)( 39,132)( 40,127)
( 41,128)( 42,129)( 43,133)( 44,134)( 45,135)( 46,121)( 47,122)( 48,123)
( 49,118)( 50,119)( 51,120)( 52,124)( 53,125)( 54,126)( 55,142)( 56,143)
( 57,144)( 58,139)( 59,140)( 60,141)( 61,136)( 62,137)( 63,138)( 64,160)
( 65,161)( 66,162)( 67,157)( 68,158)( 69,159)( 70,154)( 71,155)( 72,156)
( 73,151)( 74,152)( 75,153)( 76,148)( 77,149)( 78,150)( 79,145)( 80,146)
( 81,147)(163,181)(164,182)(165,183)(166,187)(167,188)(168,189)(169,184)
(170,185)(171,186)(175,178)(176,179)(177,180)(190,211)(191,212)(192,213)
(193,208)(194,209)(195,210)(196,214)(197,215)(198,216)(199,202)(200,203)
(201,204)(217,241)(218,242)(219,243)(220,238)(221,239)(222,240)(223,235)
(224,236)(225,237)(226,232)(227,233)(228,234);;
s2 := ( 1, 28)( 2, 30)( 3, 29)( 4, 34)( 5, 36)( 6, 35)( 7, 31)( 8, 33)
( 9, 32)( 10, 37)( 11, 39)( 12, 38)( 13, 43)( 14, 45)( 15, 44)( 16, 40)
( 17, 42)( 18, 41)( 19, 46)( 20, 48)( 21, 47)( 22, 52)( 23, 54)( 24, 53)
( 25, 49)( 26, 51)( 27, 50)( 56, 57)( 58, 61)( 59, 63)( 60, 62)( 65, 66)
( 67, 70)( 68, 72)( 69, 71)( 74, 75)( 76, 79)( 77, 81)( 78, 80)( 82,109)
( 83,111)( 84,110)( 85,115)( 86,117)( 87,116)( 88,112)( 89,114)( 90,113)
( 91,118)( 92,120)( 93,119)( 94,124)( 95,126)( 96,125)( 97,121)( 98,123)
( 99,122)(100,127)(101,129)(102,128)(103,133)(104,135)(105,134)(106,130)
(107,132)(108,131)(137,138)(139,142)(140,144)(141,143)(146,147)(148,151)
(149,153)(150,152)(155,156)(157,160)(158,162)(159,161)(163,190)(164,192)
(165,191)(166,196)(167,198)(168,197)(169,193)(170,195)(171,194)(172,199)
(173,201)(174,200)(175,205)(176,207)(177,206)(178,202)(179,204)(180,203)
(181,208)(182,210)(183,209)(184,214)(185,216)(186,215)(187,211)(188,213)
(189,212)(218,219)(220,223)(221,225)(222,224)(227,228)(229,232)(230,234)
(231,233)(236,237)(238,241)(239,243)(240,242);;
s3 := ( 2, 3)( 4, 7)( 5, 9)( 6, 8)( 11, 12)( 13, 16)( 14, 18)( 15, 17)
( 20, 21)( 22, 25)( 23, 27)( 24, 26)( 28, 55)( 29, 57)( 30, 56)( 31, 61)
( 32, 63)( 33, 62)( 34, 58)( 35, 60)( 36, 59)( 37, 64)( 38, 66)( 39, 65)
( 40, 70)( 41, 72)( 42, 71)( 43, 67)( 44, 69)( 45, 68)( 46, 73)( 47, 75)
( 48, 74)( 49, 79)( 50, 81)( 51, 80)( 52, 76)( 53, 78)( 54, 77)( 83, 84)
( 85, 88)( 86, 90)( 87, 89)( 92, 93)( 94, 97)( 95, 99)( 96, 98)(101,102)
(103,106)(104,108)(105,107)(109,136)(110,138)(111,137)(112,142)(113,144)
(114,143)(115,139)(116,141)(117,140)(118,145)(119,147)(120,146)(121,151)
(122,153)(123,152)(124,148)(125,150)(126,149)(127,154)(128,156)(129,155)
(130,160)(131,162)(132,161)(133,157)(134,159)(135,158)(164,165)(166,169)
(167,171)(168,170)(173,174)(175,178)(176,180)(177,179)(182,183)(184,187)
(185,189)(186,188)(190,217)(191,219)(192,218)(193,223)(194,225)(195,224)
(196,220)(197,222)(198,221)(199,226)(200,228)(201,227)(202,232)(203,234)
(204,233)(205,229)(206,231)(207,230)(208,235)(209,237)(210,236)(211,241)
(212,243)(213,242)(214,238)(215,240)(216,239);;
s4 := (244,245);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s2*s3*s2*s3*s2*s3, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(245)!( 4, 8)( 5, 9)( 6, 7)( 10, 19)( 11, 20)( 12, 21)( 13, 26)
( 14, 27)( 15, 25)( 16, 24)( 17, 22)( 18, 23)( 31, 35)( 32, 36)( 33, 34)
( 37, 46)( 38, 47)( 39, 48)( 40, 53)( 41, 54)( 42, 52)( 43, 51)( 44, 49)
( 45, 50)( 58, 62)( 59, 63)( 60, 61)( 64, 73)( 65, 74)( 66, 75)( 67, 80)
( 68, 81)( 69, 79)( 70, 78)( 71, 76)( 72, 77)( 82,181)( 83,182)( 84,183)
( 85,188)( 86,189)( 87,187)( 88,186)( 89,184)( 90,185)( 91,172)( 92,173)
( 93,174)( 94,179)( 95,180)( 96,178)( 97,177)( 98,175)( 99,176)(100,163)
(101,164)(102,165)(103,170)(104,171)(105,169)(106,168)(107,166)(108,167)
(109,208)(110,209)(111,210)(112,215)(113,216)(114,214)(115,213)(116,211)
(117,212)(118,199)(119,200)(120,201)(121,206)(122,207)(123,205)(124,204)
(125,202)(126,203)(127,190)(128,191)(129,192)(130,197)(131,198)(132,196)
(133,195)(134,193)(135,194)(136,235)(137,236)(138,237)(139,242)(140,243)
(141,241)(142,240)(143,238)(144,239)(145,226)(146,227)(147,228)(148,233)
(149,234)(150,232)(151,231)(152,229)(153,230)(154,217)(155,218)(156,219)
(157,224)(158,225)(159,223)(160,222)(161,220)(162,221);
s1 := Sym(245)!( 1, 82)( 2, 83)( 3, 84)( 4, 88)( 5, 89)( 6, 90)( 7, 85)
( 8, 86)( 9, 87)( 10,100)( 11,101)( 12,102)( 13,106)( 14,107)( 15,108)
( 16,103)( 17,104)( 18,105)( 19, 91)( 20, 92)( 21, 93)( 22, 97)( 23, 98)
( 24, 99)( 25, 94)( 26, 95)( 27, 96)( 28,112)( 29,113)( 30,114)( 31,109)
( 32,110)( 33,111)( 34,115)( 35,116)( 36,117)( 37,130)( 38,131)( 39,132)
( 40,127)( 41,128)( 42,129)( 43,133)( 44,134)( 45,135)( 46,121)( 47,122)
( 48,123)( 49,118)( 50,119)( 51,120)( 52,124)( 53,125)( 54,126)( 55,142)
( 56,143)( 57,144)( 58,139)( 59,140)( 60,141)( 61,136)( 62,137)( 63,138)
( 64,160)( 65,161)( 66,162)( 67,157)( 68,158)( 69,159)( 70,154)( 71,155)
( 72,156)( 73,151)( 74,152)( 75,153)( 76,148)( 77,149)( 78,150)( 79,145)
( 80,146)( 81,147)(163,181)(164,182)(165,183)(166,187)(167,188)(168,189)
(169,184)(170,185)(171,186)(175,178)(176,179)(177,180)(190,211)(191,212)
(192,213)(193,208)(194,209)(195,210)(196,214)(197,215)(198,216)(199,202)
(200,203)(201,204)(217,241)(218,242)(219,243)(220,238)(221,239)(222,240)
(223,235)(224,236)(225,237)(226,232)(227,233)(228,234);
s2 := Sym(245)!( 1, 28)( 2, 30)( 3, 29)( 4, 34)( 5, 36)( 6, 35)( 7, 31)
( 8, 33)( 9, 32)( 10, 37)( 11, 39)( 12, 38)( 13, 43)( 14, 45)( 15, 44)
( 16, 40)( 17, 42)( 18, 41)( 19, 46)( 20, 48)( 21, 47)( 22, 52)( 23, 54)
( 24, 53)( 25, 49)( 26, 51)( 27, 50)( 56, 57)( 58, 61)( 59, 63)( 60, 62)
( 65, 66)( 67, 70)( 68, 72)( 69, 71)( 74, 75)( 76, 79)( 77, 81)( 78, 80)
( 82,109)( 83,111)( 84,110)( 85,115)( 86,117)( 87,116)( 88,112)( 89,114)
( 90,113)( 91,118)( 92,120)( 93,119)( 94,124)( 95,126)( 96,125)( 97,121)
( 98,123)( 99,122)(100,127)(101,129)(102,128)(103,133)(104,135)(105,134)
(106,130)(107,132)(108,131)(137,138)(139,142)(140,144)(141,143)(146,147)
(148,151)(149,153)(150,152)(155,156)(157,160)(158,162)(159,161)(163,190)
(164,192)(165,191)(166,196)(167,198)(168,197)(169,193)(170,195)(171,194)
(172,199)(173,201)(174,200)(175,205)(176,207)(177,206)(178,202)(179,204)
(180,203)(181,208)(182,210)(183,209)(184,214)(185,216)(186,215)(187,211)
(188,213)(189,212)(218,219)(220,223)(221,225)(222,224)(227,228)(229,232)
(230,234)(231,233)(236,237)(238,241)(239,243)(240,242);
s3 := Sym(245)!( 2, 3)( 4, 7)( 5, 9)( 6, 8)( 11, 12)( 13, 16)( 14, 18)
( 15, 17)( 20, 21)( 22, 25)( 23, 27)( 24, 26)( 28, 55)( 29, 57)( 30, 56)
( 31, 61)( 32, 63)( 33, 62)( 34, 58)( 35, 60)( 36, 59)( 37, 64)( 38, 66)
( 39, 65)( 40, 70)( 41, 72)( 42, 71)( 43, 67)( 44, 69)( 45, 68)( 46, 73)
( 47, 75)( 48, 74)( 49, 79)( 50, 81)( 51, 80)( 52, 76)( 53, 78)( 54, 77)
( 83, 84)( 85, 88)( 86, 90)( 87, 89)( 92, 93)( 94, 97)( 95, 99)( 96, 98)
(101,102)(103,106)(104,108)(105,107)(109,136)(110,138)(111,137)(112,142)
(113,144)(114,143)(115,139)(116,141)(117,140)(118,145)(119,147)(120,146)
(121,151)(122,153)(123,152)(124,148)(125,150)(126,149)(127,154)(128,156)
(129,155)(130,160)(131,162)(132,161)(133,157)(134,159)(135,158)(164,165)
(166,169)(167,171)(168,170)(173,174)(175,178)(176,180)(177,179)(182,183)
(184,187)(185,189)(186,188)(190,217)(191,219)(192,218)(193,223)(194,225)
(195,224)(196,220)(197,222)(198,221)(199,226)(200,228)(201,227)(202,232)
(203,234)(204,233)(205,229)(206,231)(207,230)(208,235)(209,237)(210,236)
(211,241)(212,243)(213,242)(214,238)(215,240)(216,239);
s4 := Sym(245)!(244,245);
poly := sub<Sym(245)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s2*s3*s2*s3*s2*s3,
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope