Polytope of Type {9,18,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {9,18,2}*1944f
if this polytope has a name.
Group : SmallGroup(1944,949)
Rank : 4
Schlafli Type : {9,18,2}
Number of vertices, edges, etc : 27, 243, 54, 2
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {9,6,2}*648c
   9-fold quotients : {3,6,2}*216
   27-fold quotients : {3,6,2}*72
   81-fold quotients : {3,2,2}*24
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  3)(  4,  6)(  7,  8)( 10, 19)( 11, 21)( 12, 20)( 13, 24)( 14, 23)
( 15, 22)( 16, 26)( 17, 25)( 18, 27)( 28, 55)( 29, 57)( 30, 56)( 31, 60)
( 32, 59)( 33, 58)( 34, 62)( 35, 61)( 36, 63)( 37, 73)( 38, 75)( 39, 74)
( 40, 78)( 41, 77)( 42, 76)( 43, 80)( 44, 79)( 45, 81)( 46, 64)( 47, 66)
( 48, 65)( 49, 69)( 50, 68)( 51, 67)( 52, 71)( 53, 70)( 54, 72)( 82,181)
( 83,183)( 84,182)( 85,186)( 86,185)( 87,184)( 88,188)( 89,187)( 90,189)
( 91,172)( 92,174)( 93,173)( 94,177)( 95,176)( 96,175)( 97,179)( 98,178)
( 99,180)(100,163)(101,165)(102,164)(103,168)(104,167)(105,166)(106,170)
(107,169)(108,171)(109,235)(110,237)(111,236)(112,240)(113,239)(114,238)
(115,242)(116,241)(117,243)(118,226)(119,228)(120,227)(121,231)(122,230)
(123,229)(124,233)(125,232)(126,234)(127,217)(128,219)(129,218)(130,222)
(131,221)(132,220)(133,224)(134,223)(135,225)(136,208)(137,210)(138,209)
(139,213)(140,212)(141,211)(142,215)(143,214)(144,216)(145,199)(146,201)
(147,200)(148,204)(149,203)(150,202)(151,206)(152,205)(153,207)(154,190)
(155,192)(156,191)(157,195)(158,194)(159,193)(160,197)(161,196)(162,198);;
s1 := (  1,193)(  2,195)(  3,194)(  4,197)(  5,196)(  6,198)(  7,192)(  8,191)
(  9,190)( 10,211)( 11,213)( 12,212)( 13,215)( 14,214)( 15,216)( 16,210)
( 17,209)( 18,208)( 19,202)( 20,204)( 21,203)( 22,206)( 23,205)( 24,207)
( 25,201)( 26,200)( 27,199)( 28,171)( 29,170)( 30,169)( 31,163)( 32,165)
( 33,164)( 34,167)( 35,166)( 36,168)( 37,189)( 38,188)( 39,187)( 40,181)
( 41,183)( 42,182)( 43,185)( 44,184)( 45,186)( 46,180)( 47,179)( 48,178)
( 49,172)( 50,174)( 51,173)( 52,176)( 53,175)( 54,177)( 55,218)( 56,217)
( 57,219)( 58,222)( 59,221)( 60,220)( 61,223)( 62,225)( 63,224)( 64,236)
( 65,235)( 66,237)( 67,240)( 68,239)( 69,238)( 70,241)( 71,243)( 72,242)
( 73,227)( 74,226)( 75,228)( 76,231)( 77,230)( 78,229)( 79,232)( 80,234)
( 81,233)( 82,112)( 83,114)( 84,113)( 85,116)( 86,115)( 87,117)( 88,111)
( 89,110)( 90,109)( 91,130)( 92,132)( 93,131)( 94,134)( 95,133)( 96,135)
( 97,129)( 98,128)( 99,127)(100,121)(101,123)(102,122)(103,125)(104,124)
(105,126)(106,120)(107,119)(108,118)(136,137)(139,141)(143,144)(145,155)
(146,154)(147,156)(148,159)(149,158)(150,157)(151,160)(152,162)(153,161);;
s2 := (  4,  8)(  5,  9)(  6,  7)( 10, 19)( 11, 20)( 12, 21)( 13, 26)( 14, 27)
( 15, 25)( 16, 24)( 17, 22)( 18, 23)( 31, 35)( 32, 36)( 33, 34)( 37, 46)
( 38, 47)( 39, 48)( 40, 53)( 41, 54)( 42, 52)( 43, 51)( 44, 49)( 45, 50)
( 58, 62)( 59, 63)( 60, 61)( 64, 73)( 65, 74)( 66, 75)( 67, 80)( 68, 81)
( 69, 79)( 70, 78)( 71, 76)( 72, 77)( 82,181)( 83,182)( 84,183)( 85,188)
( 86,189)( 87,187)( 88,186)( 89,184)( 90,185)( 91,172)( 92,173)( 93,174)
( 94,179)( 95,180)( 96,178)( 97,177)( 98,175)( 99,176)(100,163)(101,164)
(102,165)(103,170)(104,171)(105,169)(106,168)(107,166)(108,167)(109,208)
(110,209)(111,210)(112,215)(113,216)(114,214)(115,213)(116,211)(117,212)
(118,199)(119,200)(120,201)(121,206)(122,207)(123,205)(124,204)(125,202)
(126,203)(127,190)(128,191)(129,192)(130,197)(131,198)(132,196)(133,195)
(134,193)(135,194)(136,235)(137,236)(138,237)(139,242)(140,243)(141,241)
(142,240)(143,238)(144,239)(145,226)(146,227)(147,228)(148,233)(149,234)
(150,232)(151,231)(152,229)(153,230)(154,217)(155,218)(156,219)(157,224)
(158,225)(159,223)(160,222)(161,220)(162,221);;
s3 := (244,245);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s2*s0*s1*s2*s1*s0*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(245)!(  2,  3)(  4,  6)(  7,  8)( 10, 19)( 11, 21)( 12, 20)( 13, 24)
( 14, 23)( 15, 22)( 16, 26)( 17, 25)( 18, 27)( 28, 55)( 29, 57)( 30, 56)
( 31, 60)( 32, 59)( 33, 58)( 34, 62)( 35, 61)( 36, 63)( 37, 73)( 38, 75)
( 39, 74)( 40, 78)( 41, 77)( 42, 76)( 43, 80)( 44, 79)( 45, 81)( 46, 64)
( 47, 66)( 48, 65)( 49, 69)( 50, 68)( 51, 67)( 52, 71)( 53, 70)( 54, 72)
( 82,181)( 83,183)( 84,182)( 85,186)( 86,185)( 87,184)( 88,188)( 89,187)
( 90,189)( 91,172)( 92,174)( 93,173)( 94,177)( 95,176)( 96,175)( 97,179)
( 98,178)( 99,180)(100,163)(101,165)(102,164)(103,168)(104,167)(105,166)
(106,170)(107,169)(108,171)(109,235)(110,237)(111,236)(112,240)(113,239)
(114,238)(115,242)(116,241)(117,243)(118,226)(119,228)(120,227)(121,231)
(122,230)(123,229)(124,233)(125,232)(126,234)(127,217)(128,219)(129,218)
(130,222)(131,221)(132,220)(133,224)(134,223)(135,225)(136,208)(137,210)
(138,209)(139,213)(140,212)(141,211)(142,215)(143,214)(144,216)(145,199)
(146,201)(147,200)(148,204)(149,203)(150,202)(151,206)(152,205)(153,207)
(154,190)(155,192)(156,191)(157,195)(158,194)(159,193)(160,197)(161,196)
(162,198);
s1 := Sym(245)!(  1,193)(  2,195)(  3,194)(  4,197)(  5,196)(  6,198)(  7,192)
(  8,191)(  9,190)( 10,211)( 11,213)( 12,212)( 13,215)( 14,214)( 15,216)
( 16,210)( 17,209)( 18,208)( 19,202)( 20,204)( 21,203)( 22,206)( 23,205)
( 24,207)( 25,201)( 26,200)( 27,199)( 28,171)( 29,170)( 30,169)( 31,163)
( 32,165)( 33,164)( 34,167)( 35,166)( 36,168)( 37,189)( 38,188)( 39,187)
( 40,181)( 41,183)( 42,182)( 43,185)( 44,184)( 45,186)( 46,180)( 47,179)
( 48,178)( 49,172)( 50,174)( 51,173)( 52,176)( 53,175)( 54,177)( 55,218)
( 56,217)( 57,219)( 58,222)( 59,221)( 60,220)( 61,223)( 62,225)( 63,224)
( 64,236)( 65,235)( 66,237)( 67,240)( 68,239)( 69,238)( 70,241)( 71,243)
( 72,242)( 73,227)( 74,226)( 75,228)( 76,231)( 77,230)( 78,229)( 79,232)
( 80,234)( 81,233)( 82,112)( 83,114)( 84,113)( 85,116)( 86,115)( 87,117)
( 88,111)( 89,110)( 90,109)( 91,130)( 92,132)( 93,131)( 94,134)( 95,133)
( 96,135)( 97,129)( 98,128)( 99,127)(100,121)(101,123)(102,122)(103,125)
(104,124)(105,126)(106,120)(107,119)(108,118)(136,137)(139,141)(143,144)
(145,155)(146,154)(147,156)(148,159)(149,158)(150,157)(151,160)(152,162)
(153,161);
s2 := Sym(245)!(  4,  8)(  5,  9)(  6,  7)( 10, 19)( 11, 20)( 12, 21)( 13, 26)
( 14, 27)( 15, 25)( 16, 24)( 17, 22)( 18, 23)( 31, 35)( 32, 36)( 33, 34)
( 37, 46)( 38, 47)( 39, 48)( 40, 53)( 41, 54)( 42, 52)( 43, 51)( 44, 49)
( 45, 50)( 58, 62)( 59, 63)( 60, 61)( 64, 73)( 65, 74)( 66, 75)( 67, 80)
( 68, 81)( 69, 79)( 70, 78)( 71, 76)( 72, 77)( 82,181)( 83,182)( 84,183)
( 85,188)( 86,189)( 87,187)( 88,186)( 89,184)( 90,185)( 91,172)( 92,173)
( 93,174)( 94,179)( 95,180)( 96,178)( 97,177)( 98,175)( 99,176)(100,163)
(101,164)(102,165)(103,170)(104,171)(105,169)(106,168)(107,166)(108,167)
(109,208)(110,209)(111,210)(112,215)(113,216)(114,214)(115,213)(116,211)
(117,212)(118,199)(119,200)(120,201)(121,206)(122,207)(123,205)(124,204)
(125,202)(126,203)(127,190)(128,191)(129,192)(130,197)(131,198)(132,196)
(133,195)(134,193)(135,194)(136,235)(137,236)(138,237)(139,242)(140,243)
(141,241)(142,240)(143,238)(144,239)(145,226)(146,227)(147,228)(148,233)
(149,234)(150,232)(151,231)(152,229)(153,230)(154,217)(155,218)(156,219)
(157,224)(158,225)(159,223)(160,222)(161,220)(162,221);
s3 := Sym(245)!(244,245);
poly := sub<Sym(245)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s2*s0*s1*s2*s1*s0*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope