Polytope of Type {3,6,9,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,6,9,2}*1944b
if this polytope has a name.
Group : SmallGroup(1944,952)
Rank : 5
Schlafli Type : {3,6,9,2}
Number of vertices, edges, etc : 9, 27, 81, 9, 2
Order of s0s1s2s3s4 : 18
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {3,6,9,2}*648, {3,6,3,2}*648b
   9-fold quotients : {3,2,9,2}*216, {3,6,3,2}*216
   27-fold quotients : {3,2,3,2}*72
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  4,  8)(  5,  9)(  6,  7)( 13, 17)( 14, 18)( 15, 16)( 22, 26)( 23, 27)
( 24, 25)( 28, 55)( 29, 56)( 30, 57)( 31, 62)( 32, 63)( 33, 61)( 34, 60)
( 35, 58)( 36, 59)( 37, 64)( 38, 65)( 39, 66)( 40, 71)( 41, 72)( 42, 70)
( 43, 69)( 44, 67)( 45, 68)( 46, 73)( 47, 74)( 48, 75)( 49, 80)( 50, 81)
( 51, 79)( 52, 78)( 53, 76)( 54, 77)( 85, 89)( 86, 90)( 87, 88)( 94, 98)
( 95, 99)( 96, 97)(103,107)(104,108)(105,106)(109,136)(110,137)(111,138)
(112,143)(113,144)(114,142)(115,141)(116,139)(117,140)(118,145)(119,146)
(120,147)(121,152)(122,153)(123,151)(124,150)(125,148)(126,149)(127,154)
(128,155)(129,156)(130,161)(131,162)(132,160)(133,159)(134,157)(135,158)
(166,170)(167,171)(168,169)(175,179)(176,180)(177,178)(184,188)(185,189)
(186,187)(190,217)(191,218)(192,219)(193,224)(194,225)(195,223)(196,222)
(197,220)(198,221)(199,226)(200,227)(201,228)(202,233)(203,234)(204,232)
(205,231)(206,229)(207,230)(208,235)(209,236)(210,237)(211,242)(212,243)
(213,241)(214,240)(215,238)(216,239);;
s1 := (  1, 28)(  2, 29)(  3, 30)(  4, 34)(  5, 35)(  6, 36)(  7, 31)(  8, 32)
(  9, 33)( 10, 37)( 11, 38)( 12, 39)( 13, 43)( 14, 44)( 15, 45)( 16, 40)
( 17, 41)( 18, 42)( 19, 46)( 20, 47)( 21, 48)( 22, 52)( 23, 53)( 24, 54)
( 25, 49)( 26, 50)( 27, 51)( 58, 61)( 59, 62)( 60, 63)( 67, 70)( 68, 71)
( 69, 72)( 76, 79)( 77, 80)( 78, 81)( 82,109)( 83,110)( 84,111)( 85,115)
( 86,116)( 87,117)( 88,112)( 89,113)( 90,114)( 91,118)( 92,119)( 93,120)
( 94,124)( 95,125)( 96,126)( 97,121)( 98,122)( 99,123)(100,127)(101,128)
(102,129)(103,133)(104,134)(105,135)(106,130)(107,131)(108,132)(139,142)
(140,143)(141,144)(148,151)(149,152)(150,153)(157,160)(158,161)(159,162)
(163,190)(164,191)(165,192)(166,196)(167,197)(168,198)(169,193)(170,194)
(171,195)(172,199)(173,200)(174,201)(175,205)(176,206)(177,207)(178,202)
(179,203)(180,204)(181,208)(182,209)(183,210)(184,214)(185,215)(186,216)
(187,211)(188,212)(189,213)(220,223)(221,224)(222,225)(229,232)(230,233)
(231,234)(238,241)(239,242)(240,243);;
s2 := (  1, 82)(  2, 84)(  3, 83)(  4, 88)(  5, 90)(  6, 89)(  7, 85)(  8, 87)
(  9, 86)( 10,100)( 11,102)( 12,101)( 13,106)( 14,108)( 15,107)( 16,103)
( 17,105)( 18,104)( 19, 91)( 20, 93)( 21, 92)( 22, 97)( 23, 99)( 24, 98)
( 25, 94)( 26, 96)( 27, 95)( 28,112)( 29,114)( 30,113)( 31,109)( 32,111)
( 33,110)( 34,115)( 35,117)( 36,116)( 37,130)( 38,132)( 39,131)( 40,127)
( 41,129)( 42,128)( 43,133)( 44,135)( 45,134)( 46,121)( 47,123)( 48,122)
( 49,118)( 50,120)( 51,119)( 52,124)( 53,126)( 54,125)( 55,143)( 56,142)
( 57,144)( 58,140)( 59,139)( 60,141)( 61,137)( 62,136)( 63,138)( 64,161)
( 65,160)( 66,162)( 67,158)( 68,157)( 69,159)( 70,155)( 71,154)( 72,156)
( 73,152)( 74,151)( 75,153)( 76,149)( 77,148)( 78,150)( 79,146)( 80,145)
( 81,147)(163,181)(164,183)(165,182)(166,187)(167,189)(168,188)(169,184)
(170,186)(171,185)(173,174)(175,178)(176,180)(177,179)(190,211)(191,213)
(192,212)(193,208)(194,210)(195,209)(196,214)(197,216)(198,215)(199,202)
(200,204)(201,203)(206,207)(217,242)(218,241)(219,243)(220,239)(221,238)
(222,240)(223,236)(224,235)(225,237)(226,233)(227,232)(228,234)(229,230);;
s3 := (  2,  3)(  4,  7)(  5,  9)(  6,  8)( 10, 19)( 11, 21)( 12, 20)( 13, 25)
( 14, 27)( 15, 26)( 16, 22)( 17, 24)( 18, 23)( 29, 30)( 31, 34)( 32, 36)
( 33, 35)( 37, 46)( 38, 48)( 39, 47)( 40, 52)( 41, 54)( 42, 53)( 43, 49)
( 44, 51)( 45, 50)( 56, 57)( 58, 61)( 59, 63)( 60, 62)( 64, 73)( 65, 75)
( 66, 74)( 67, 79)( 68, 81)( 69, 80)( 70, 76)( 71, 78)( 72, 77)( 82,181)
( 83,183)( 84,182)( 85,187)( 86,189)( 87,188)( 88,184)( 89,186)( 90,185)
( 91,172)( 92,174)( 93,173)( 94,178)( 95,180)( 96,179)( 97,175)( 98,177)
( 99,176)(100,163)(101,165)(102,164)(103,169)(104,171)(105,170)(106,166)
(107,168)(108,167)(109,208)(110,210)(111,209)(112,214)(113,216)(114,215)
(115,211)(116,213)(117,212)(118,199)(119,201)(120,200)(121,205)(122,207)
(123,206)(124,202)(125,204)(126,203)(127,190)(128,192)(129,191)(130,196)
(131,198)(132,197)(133,193)(134,195)(135,194)(136,235)(137,237)(138,236)
(139,241)(140,243)(141,242)(142,238)(143,240)(144,239)(145,226)(146,228)
(147,227)(148,232)(149,234)(150,233)(151,229)(152,231)(153,230)(154,217)
(155,219)(156,218)(157,223)(158,225)(159,224)(160,220)(161,222)(162,221);;
s4 := (244,245);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s1*s0*s1*s0*s1, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(245)!(  4,  8)(  5,  9)(  6,  7)( 13, 17)( 14, 18)( 15, 16)( 22, 26)
( 23, 27)( 24, 25)( 28, 55)( 29, 56)( 30, 57)( 31, 62)( 32, 63)( 33, 61)
( 34, 60)( 35, 58)( 36, 59)( 37, 64)( 38, 65)( 39, 66)( 40, 71)( 41, 72)
( 42, 70)( 43, 69)( 44, 67)( 45, 68)( 46, 73)( 47, 74)( 48, 75)( 49, 80)
( 50, 81)( 51, 79)( 52, 78)( 53, 76)( 54, 77)( 85, 89)( 86, 90)( 87, 88)
( 94, 98)( 95, 99)( 96, 97)(103,107)(104,108)(105,106)(109,136)(110,137)
(111,138)(112,143)(113,144)(114,142)(115,141)(116,139)(117,140)(118,145)
(119,146)(120,147)(121,152)(122,153)(123,151)(124,150)(125,148)(126,149)
(127,154)(128,155)(129,156)(130,161)(131,162)(132,160)(133,159)(134,157)
(135,158)(166,170)(167,171)(168,169)(175,179)(176,180)(177,178)(184,188)
(185,189)(186,187)(190,217)(191,218)(192,219)(193,224)(194,225)(195,223)
(196,222)(197,220)(198,221)(199,226)(200,227)(201,228)(202,233)(203,234)
(204,232)(205,231)(206,229)(207,230)(208,235)(209,236)(210,237)(211,242)
(212,243)(213,241)(214,240)(215,238)(216,239);
s1 := Sym(245)!(  1, 28)(  2, 29)(  3, 30)(  4, 34)(  5, 35)(  6, 36)(  7, 31)
(  8, 32)(  9, 33)( 10, 37)( 11, 38)( 12, 39)( 13, 43)( 14, 44)( 15, 45)
( 16, 40)( 17, 41)( 18, 42)( 19, 46)( 20, 47)( 21, 48)( 22, 52)( 23, 53)
( 24, 54)( 25, 49)( 26, 50)( 27, 51)( 58, 61)( 59, 62)( 60, 63)( 67, 70)
( 68, 71)( 69, 72)( 76, 79)( 77, 80)( 78, 81)( 82,109)( 83,110)( 84,111)
( 85,115)( 86,116)( 87,117)( 88,112)( 89,113)( 90,114)( 91,118)( 92,119)
( 93,120)( 94,124)( 95,125)( 96,126)( 97,121)( 98,122)( 99,123)(100,127)
(101,128)(102,129)(103,133)(104,134)(105,135)(106,130)(107,131)(108,132)
(139,142)(140,143)(141,144)(148,151)(149,152)(150,153)(157,160)(158,161)
(159,162)(163,190)(164,191)(165,192)(166,196)(167,197)(168,198)(169,193)
(170,194)(171,195)(172,199)(173,200)(174,201)(175,205)(176,206)(177,207)
(178,202)(179,203)(180,204)(181,208)(182,209)(183,210)(184,214)(185,215)
(186,216)(187,211)(188,212)(189,213)(220,223)(221,224)(222,225)(229,232)
(230,233)(231,234)(238,241)(239,242)(240,243);
s2 := Sym(245)!(  1, 82)(  2, 84)(  3, 83)(  4, 88)(  5, 90)(  6, 89)(  7, 85)
(  8, 87)(  9, 86)( 10,100)( 11,102)( 12,101)( 13,106)( 14,108)( 15,107)
( 16,103)( 17,105)( 18,104)( 19, 91)( 20, 93)( 21, 92)( 22, 97)( 23, 99)
( 24, 98)( 25, 94)( 26, 96)( 27, 95)( 28,112)( 29,114)( 30,113)( 31,109)
( 32,111)( 33,110)( 34,115)( 35,117)( 36,116)( 37,130)( 38,132)( 39,131)
( 40,127)( 41,129)( 42,128)( 43,133)( 44,135)( 45,134)( 46,121)( 47,123)
( 48,122)( 49,118)( 50,120)( 51,119)( 52,124)( 53,126)( 54,125)( 55,143)
( 56,142)( 57,144)( 58,140)( 59,139)( 60,141)( 61,137)( 62,136)( 63,138)
( 64,161)( 65,160)( 66,162)( 67,158)( 68,157)( 69,159)( 70,155)( 71,154)
( 72,156)( 73,152)( 74,151)( 75,153)( 76,149)( 77,148)( 78,150)( 79,146)
( 80,145)( 81,147)(163,181)(164,183)(165,182)(166,187)(167,189)(168,188)
(169,184)(170,186)(171,185)(173,174)(175,178)(176,180)(177,179)(190,211)
(191,213)(192,212)(193,208)(194,210)(195,209)(196,214)(197,216)(198,215)
(199,202)(200,204)(201,203)(206,207)(217,242)(218,241)(219,243)(220,239)
(221,238)(222,240)(223,236)(224,235)(225,237)(226,233)(227,232)(228,234)
(229,230);
s3 := Sym(245)!(  2,  3)(  4,  7)(  5,  9)(  6,  8)( 10, 19)( 11, 21)( 12, 20)
( 13, 25)( 14, 27)( 15, 26)( 16, 22)( 17, 24)( 18, 23)( 29, 30)( 31, 34)
( 32, 36)( 33, 35)( 37, 46)( 38, 48)( 39, 47)( 40, 52)( 41, 54)( 42, 53)
( 43, 49)( 44, 51)( 45, 50)( 56, 57)( 58, 61)( 59, 63)( 60, 62)( 64, 73)
( 65, 75)( 66, 74)( 67, 79)( 68, 81)( 69, 80)( 70, 76)( 71, 78)( 72, 77)
( 82,181)( 83,183)( 84,182)( 85,187)( 86,189)( 87,188)( 88,184)( 89,186)
( 90,185)( 91,172)( 92,174)( 93,173)( 94,178)( 95,180)( 96,179)( 97,175)
( 98,177)( 99,176)(100,163)(101,165)(102,164)(103,169)(104,171)(105,170)
(106,166)(107,168)(108,167)(109,208)(110,210)(111,209)(112,214)(113,216)
(114,215)(115,211)(116,213)(117,212)(118,199)(119,201)(120,200)(121,205)
(122,207)(123,206)(124,202)(125,204)(126,203)(127,190)(128,192)(129,191)
(130,196)(131,198)(132,197)(133,193)(134,195)(135,194)(136,235)(137,237)
(138,236)(139,241)(140,243)(141,242)(142,238)(143,240)(144,239)(145,226)
(146,228)(147,227)(148,232)(149,234)(150,233)(151,229)(152,231)(153,230)
(154,217)(155,219)(156,218)(157,223)(158,225)(159,224)(160,220)(161,222)
(162,221);
s4 := Sym(245)!(244,245);
poly := sub<Sym(245)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4, s0*s1*s0*s1*s0*s1, 
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope