Polytope of Type {14,7,2,5}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {14,7,2,5}*1960
if this polytope has a name.
Group : SmallGroup(1960,126)
Rank : 5
Schlafli Type : {14,7,2,5}
Number of vertices, edges, etc : 14, 49, 7, 5, 5
Order of s0s1s2s3s4 : 70
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   7-fold quotients : {2,7,2,5}*280
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 8,43)( 9,44)(10,45)(11,46)(12,47)(13,48)(14,49)(15,36)(16,37)(17,38)
(18,39)(19,40)(20,41)(21,42)(22,29)(23,30)(24,31)(25,32)(26,33)(27,34)
(28,35);;
s1 := ( 1, 8)( 2,14)( 3,13)( 4,12)( 5,11)( 6,10)( 7, 9)(15,43)(16,49)(17,48)
(18,47)(19,46)(20,45)(21,44)(22,36)(23,42)(24,41)(25,40)(26,39)(27,38)(28,37)
(30,35)(31,34)(32,33);;
s2 := ( 1, 2)( 3, 7)( 4, 6)( 8,44)( 9,43)(10,49)(11,48)(12,47)(13,46)(14,45)
(15,37)(16,36)(17,42)(18,41)(19,40)(20,39)(21,38)(22,30)(23,29)(24,35)(25,34)
(26,33)(27,32)(28,31);;
s3 := (51,52)(53,54);;
s4 := (50,51)(52,53);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(54)!( 8,43)( 9,44)(10,45)(11,46)(12,47)(13,48)(14,49)(15,36)(16,37)
(17,38)(18,39)(19,40)(20,41)(21,42)(22,29)(23,30)(24,31)(25,32)(26,33)(27,34)
(28,35);
s1 := Sym(54)!( 1, 8)( 2,14)( 3,13)( 4,12)( 5,11)( 6,10)( 7, 9)(15,43)(16,49)
(17,48)(18,47)(19,46)(20,45)(21,44)(22,36)(23,42)(24,41)(25,40)(26,39)(27,38)
(28,37)(30,35)(31,34)(32,33);
s2 := Sym(54)!( 1, 2)( 3, 7)( 4, 6)( 8,44)( 9,43)(10,49)(11,48)(12,47)(13,46)
(14,45)(15,37)(16,36)(17,42)(18,41)(19,40)(20,39)(21,38)(22,30)(23,29)(24,35)
(25,34)(26,33)(27,32)(28,31);
s3 := Sym(54)!(51,52)(53,54);
s4 := Sym(54)!(50,51)(52,53);
poly := sub<Sym(54)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope