Polytope of Type {4,246}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,246}*1968a
Also Known As : {4,246|2}. if this polytope has another name.
Group : SmallGroup(1968,175)
Rank : 3
Schlafli Type : {4,246}
Number of vertices, edges, etc : 4, 492, 246
Order of s0s1s2 : 492
Order of s0s1s2s1 : 2
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,246}*984
   3-fold quotients : {4,82}*656
   4-fold quotients : {2,123}*492
   6-fold quotients : {2,82}*328
   12-fold quotients : {2,41}*164
   41-fold quotients : {4,6}*48a
   82-fold quotients : {2,6}*24
   123-fold quotients : {4,2}*16
   164-fold quotients : {2,3}*12
   246-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (247,370)(248,371)(249,372)(250,373)(251,374)(252,375)(253,376)(254,377)
(255,378)(256,379)(257,380)(258,381)(259,382)(260,383)(261,384)(262,385)
(263,386)(264,387)(265,388)(266,389)(267,390)(268,391)(269,392)(270,393)
(271,394)(272,395)(273,396)(274,397)(275,398)(276,399)(277,400)(278,401)
(279,402)(280,403)(281,404)(282,405)(283,406)(284,407)(285,408)(286,409)
(287,410)(288,411)(289,412)(290,413)(291,414)(292,415)(293,416)(294,417)
(295,418)(296,419)(297,420)(298,421)(299,422)(300,423)(301,424)(302,425)
(303,426)(304,427)(305,428)(306,429)(307,430)(308,431)(309,432)(310,433)
(311,434)(312,435)(313,436)(314,437)(315,438)(316,439)(317,440)(318,441)
(319,442)(320,443)(321,444)(322,445)(323,446)(324,447)(325,448)(326,449)
(327,450)(328,451)(329,452)(330,453)(331,454)(332,455)(333,456)(334,457)
(335,458)(336,459)(337,460)(338,461)(339,462)(340,463)(341,464)(342,465)
(343,466)(344,467)(345,468)(346,469)(347,470)(348,471)(349,472)(350,473)
(351,474)(352,475)(353,476)(354,477)(355,478)(356,479)(357,480)(358,481)
(359,482)(360,483)(361,484)(362,485)(363,486)(364,487)(365,488)(366,489)
(367,490)(368,491)(369,492);;
s1 := (  1,247)(  2,287)(  3,286)(  4,285)(  5,284)(  6,283)(  7,282)(  8,281)
(  9,280)( 10,279)( 11,278)( 12,277)( 13,276)( 14,275)( 15,274)( 16,273)
( 17,272)( 18,271)( 19,270)( 20,269)( 21,268)( 22,267)( 23,266)( 24,265)
( 25,264)( 26,263)( 27,262)( 28,261)( 29,260)( 30,259)( 31,258)( 32,257)
( 33,256)( 34,255)( 35,254)( 36,253)( 37,252)( 38,251)( 39,250)( 40,249)
( 41,248)( 42,329)( 43,369)( 44,368)( 45,367)( 46,366)( 47,365)( 48,364)
( 49,363)( 50,362)( 51,361)( 52,360)( 53,359)( 54,358)( 55,357)( 56,356)
( 57,355)( 58,354)( 59,353)( 60,352)( 61,351)( 62,350)( 63,349)( 64,348)
( 65,347)( 66,346)( 67,345)( 68,344)( 69,343)( 70,342)( 71,341)( 72,340)
( 73,339)( 74,338)( 75,337)( 76,336)( 77,335)( 78,334)( 79,333)( 80,332)
( 81,331)( 82,330)( 83,288)( 84,328)( 85,327)( 86,326)( 87,325)( 88,324)
( 89,323)( 90,322)( 91,321)( 92,320)( 93,319)( 94,318)( 95,317)( 96,316)
( 97,315)( 98,314)( 99,313)(100,312)(101,311)(102,310)(103,309)(104,308)
(105,307)(106,306)(107,305)(108,304)(109,303)(110,302)(111,301)(112,300)
(113,299)(114,298)(115,297)(116,296)(117,295)(118,294)(119,293)(120,292)
(121,291)(122,290)(123,289)(124,370)(125,410)(126,409)(127,408)(128,407)
(129,406)(130,405)(131,404)(132,403)(133,402)(134,401)(135,400)(136,399)
(137,398)(138,397)(139,396)(140,395)(141,394)(142,393)(143,392)(144,391)
(145,390)(146,389)(147,388)(148,387)(149,386)(150,385)(151,384)(152,383)
(153,382)(154,381)(155,380)(156,379)(157,378)(158,377)(159,376)(160,375)
(161,374)(162,373)(163,372)(164,371)(165,452)(166,492)(167,491)(168,490)
(169,489)(170,488)(171,487)(172,486)(173,485)(174,484)(175,483)(176,482)
(177,481)(178,480)(179,479)(180,478)(181,477)(182,476)(183,475)(184,474)
(185,473)(186,472)(187,471)(188,470)(189,469)(190,468)(191,467)(192,466)
(193,465)(194,464)(195,463)(196,462)(197,461)(198,460)(199,459)(200,458)
(201,457)(202,456)(203,455)(204,454)(205,453)(206,411)(207,451)(208,450)
(209,449)(210,448)(211,447)(212,446)(213,445)(214,444)(215,443)(216,442)
(217,441)(218,440)(219,439)(220,438)(221,437)(222,436)(223,435)(224,434)
(225,433)(226,432)(227,431)(228,430)(229,429)(230,428)(231,427)(232,426)
(233,425)(234,424)(235,423)(236,422)(237,421)(238,420)(239,419)(240,418)
(241,417)(242,416)(243,415)(244,414)(245,413)(246,412);;
s2 := (  1, 43)(  2, 42)(  3, 82)(  4, 81)(  5, 80)(  6, 79)(  7, 78)(  8, 77)
(  9, 76)( 10, 75)( 11, 74)( 12, 73)( 13, 72)( 14, 71)( 15, 70)( 16, 69)
( 17, 68)( 18, 67)( 19, 66)( 20, 65)( 21, 64)( 22, 63)( 23, 62)( 24, 61)
( 25, 60)( 26, 59)( 27, 58)( 28, 57)( 29, 56)( 30, 55)( 31, 54)( 32, 53)
( 33, 52)( 34, 51)( 35, 50)( 36, 49)( 37, 48)( 38, 47)( 39, 46)( 40, 45)
( 41, 44)( 83, 84)( 85,123)( 86,122)( 87,121)( 88,120)( 89,119)( 90,118)
( 91,117)( 92,116)( 93,115)( 94,114)( 95,113)( 96,112)( 97,111)( 98,110)
( 99,109)(100,108)(101,107)(102,106)(103,105)(124,166)(125,165)(126,205)
(127,204)(128,203)(129,202)(130,201)(131,200)(132,199)(133,198)(134,197)
(135,196)(136,195)(137,194)(138,193)(139,192)(140,191)(141,190)(142,189)
(143,188)(144,187)(145,186)(146,185)(147,184)(148,183)(149,182)(150,181)
(151,180)(152,179)(153,178)(154,177)(155,176)(156,175)(157,174)(158,173)
(159,172)(160,171)(161,170)(162,169)(163,168)(164,167)(206,207)(208,246)
(209,245)(210,244)(211,243)(212,242)(213,241)(214,240)(215,239)(216,238)
(217,237)(218,236)(219,235)(220,234)(221,233)(222,232)(223,231)(224,230)
(225,229)(226,228)(247,289)(248,288)(249,328)(250,327)(251,326)(252,325)
(253,324)(254,323)(255,322)(256,321)(257,320)(258,319)(259,318)(260,317)
(261,316)(262,315)(263,314)(264,313)(265,312)(266,311)(267,310)(268,309)
(269,308)(270,307)(271,306)(272,305)(273,304)(274,303)(275,302)(276,301)
(277,300)(278,299)(279,298)(280,297)(281,296)(282,295)(283,294)(284,293)
(285,292)(286,291)(287,290)(329,330)(331,369)(332,368)(333,367)(334,366)
(335,365)(336,364)(337,363)(338,362)(339,361)(340,360)(341,359)(342,358)
(343,357)(344,356)(345,355)(346,354)(347,353)(348,352)(349,351)(370,412)
(371,411)(372,451)(373,450)(374,449)(375,448)(376,447)(377,446)(378,445)
(379,444)(380,443)(381,442)(382,441)(383,440)(384,439)(385,438)(386,437)
(387,436)(388,435)(389,434)(390,433)(391,432)(392,431)(393,430)(394,429)
(395,428)(396,427)(397,426)(398,425)(399,424)(400,423)(401,422)(402,421)
(403,420)(404,419)(405,418)(406,417)(407,416)(408,415)(409,414)(410,413)
(452,453)(454,492)(455,491)(456,490)(457,489)(458,488)(459,487)(460,486)
(461,485)(462,484)(463,483)(464,482)(465,481)(466,480)(467,479)(468,478)
(469,477)(470,476)(471,475)(472,474);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(492)!(247,370)(248,371)(249,372)(250,373)(251,374)(252,375)(253,376)
(254,377)(255,378)(256,379)(257,380)(258,381)(259,382)(260,383)(261,384)
(262,385)(263,386)(264,387)(265,388)(266,389)(267,390)(268,391)(269,392)
(270,393)(271,394)(272,395)(273,396)(274,397)(275,398)(276,399)(277,400)
(278,401)(279,402)(280,403)(281,404)(282,405)(283,406)(284,407)(285,408)
(286,409)(287,410)(288,411)(289,412)(290,413)(291,414)(292,415)(293,416)
(294,417)(295,418)(296,419)(297,420)(298,421)(299,422)(300,423)(301,424)
(302,425)(303,426)(304,427)(305,428)(306,429)(307,430)(308,431)(309,432)
(310,433)(311,434)(312,435)(313,436)(314,437)(315,438)(316,439)(317,440)
(318,441)(319,442)(320,443)(321,444)(322,445)(323,446)(324,447)(325,448)
(326,449)(327,450)(328,451)(329,452)(330,453)(331,454)(332,455)(333,456)
(334,457)(335,458)(336,459)(337,460)(338,461)(339,462)(340,463)(341,464)
(342,465)(343,466)(344,467)(345,468)(346,469)(347,470)(348,471)(349,472)
(350,473)(351,474)(352,475)(353,476)(354,477)(355,478)(356,479)(357,480)
(358,481)(359,482)(360,483)(361,484)(362,485)(363,486)(364,487)(365,488)
(366,489)(367,490)(368,491)(369,492);
s1 := Sym(492)!(  1,247)(  2,287)(  3,286)(  4,285)(  5,284)(  6,283)(  7,282)
(  8,281)(  9,280)( 10,279)( 11,278)( 12,277)( 13,276)( 14,275)( 15,274)
( 16,273)( 17,272)( 18,271)( 19,270)( 20,269)( 21,268)( 22,267)( 23,266)
( 24,265)( 25,264)( 26,263)( 27,262)( 28,261)( 29,260)( 30,259)( 31,258)
( 32,257)( 33,256)( 34,255)( 35,254)( 36,253)( 37,252)( 38,251)( 39,250)
( 40,249)( 41,248)( 42,329)( 43,369)( 44,368)( 45,367)( 46,366)( 47,365)
( 48,364)( 49,363)( 50,362)( 51,361)( 52,360)( 53,359)( 54,358)( 55,357)
( 56,356)( 57,355)( 58,354)( 59,353)( 60,352)( 61,351)( 62,350)( 63,349)
( 64,348)( 65,347)( 66,346)( 67,345)( 68,344)( 69,343)( 70,342)( 71,341)
( 72,340)( 73,339)( 74,338)( 75,337)( 76,336)( 77,335)( 78,334)( 79,333)
( 80,332)( 81,331)( 82,330)( 83,288)( 84,328)( 85,327)( 86,326)( 87,325)
( 88,324)( 89,323)( 90,322)( 91,321)( 92,320)( 93,319)( 94,318)( 95,317)
( 96,316)( 97,315)( 98,314)( 99,313)(100,312)(101,311)(102,310)(103,309)
(104,308)(105,307)(106,306)(107,305)(108,304)(109,303)(110,302)(111,301)
(112,300)(113,299)(114,298)(115,297)(116,296)(117,295)(118,294)(119,293)
(120,292)(121,291)(122,290)(123,289)(124,370)(125,410)(126,409)(127,408)
(128,407)(129,406)(130,405)(131,404)(132,403)(133,402)(134,401)(135,400)
(136,399)(137,398)(138,397)(139,396)(140,395)(141,394)(142,393)(143,392)
(144,391)(145,390)(146,389)(147,388)(148,387)(149,386)(150,385)(151,384)
(152,383)(153,382)(154,381)(155,380)(156,379)(157,378)(158,377)(159,376)
(160,375)(161,374)(162,373)(163,372)(164,371)(165,452)(166,492)(167,491)
(168,490)(169,489)(170,488)(171,487)(172,486)(173,485)(174,484)(175,483)
(176,482)(177,481)(178,480)(179,479)(180,478)(181,477)(182,476)(183,475)
(184,474)(185,473)(186,472)(187,471)(188,470)(189,469)(190,468)(191,467)
(192,466)(193,465)(194,464)(195,463)(196,462)(197,461)(198,460)(199,459)
(200,458)(201,457)(202,456)(203,455)(204,454)(205,453)(206,411)(207,451)
(208,450)(209,449)(210,448)(211,447)(212,446)(213,445)(214,444)(215,443)
(216,442)(217,441)(218,440)(219,439)(220,438)(221,437)(222,436)(223,435)
(224,434)(225,433)(226,432)(227,431)(228,430)(229,429)(230,428)(231,427)
(232,426)(233,425)(234,424)(235,423)(236,422)(237,421)(238,420)(239,419)
(240,418)(241,417)(242,416)(243,415)(244,414)(245,413)(246,412);
s2 := Sym(492)!(  1, 43)(  2, 42)(  3, 82)(  4, 81)(  5, 80)(  6, 79)(  7, 78)
(  8, 77)(  9, 76)( 10, 75)( 11, 74)( 12, 73)( 13, 72)( 14, 71)( 15, 70)
( 16, 69)( 17, 68)( 18, 67)( 19, 66)( 20, 65)( 21, 64)( 22, 63)( 23, 62)
( 24, 61)( 25, 60)( 26, 59)( 27, 58)( 28, 57)( 29, 56)( 30, 55)( 31, 54)
( 32, 53)( 33, 52)( 34, 51)( 35, 50)( 36, 49)( 37, 48)( 38, 47)( 39, 46)
( 40, 45)( 41, 44)( 83, 84)( 85,123)( 86,122)( 87,121)( 88,120)( 89,119)
( 90,118)( 91,117)( 92,116)( 93,115)( 94,114)( 95,113)( 96,112)( 97,111)
( 98,110)( 99,109)(100,108)(101,107)(102,106)(103,105)(124,166)(125,165)
(126,205)(127,204)(128,203)(129,202)(130,201)(131,200)(132,199)(133,198)
(134,197)(135,196)(136,195)(137,194)(138,193)(139,192)(140,191)(141,190)
(142,189)(143,188)(144,187)(145,186)(146,185)(147,184)(148,183)(149,182)
(150,181)(151,180)(152,179)(153,178)(154,177)(155,176)(156,175)(157,174)
(158,173)(159,172)(160,171)(161,170)(162,169)(163,168)(164,167)(206,207)
(208,246)(209,245)(210,244)(211,243)(212,242)(213,241)(214,240)(215,239)
(216,238)(217,237)(218,236)(219,235)(220,234)(221,233)(222,232)(223,231)
(224,230)(225,229)(226,228)(247,289)(248,288)(249,328)(250,327)(251,326)
(252,325)(253,324)(254,323)(255,322)(256,321)(257,320)(258,319)(259,318)
(260,317)(261,316)(262,315)(263,314)(264,313)(265,312)(266,311)(267,310)
(268,309)(269,308)(270,307)(271,306)(272,305)(273,304)(274,303)(275,302)
(276,301)(277,300)(278,299)(279,298)(280,297)(281,296)(282,295)(283,294)
(284,293)(285,292)(286,291)(287,290)(329,330)(331,369)(332,368)(333,367)
(334,366)(335,365)(336,364)(337,363)(338,362)(339,361)(340,360)(341,359)
(342,358)(343,357)(344,356)(345,355)(346,354)(347,353)(348,352)(349,351)
(370,412)(371,411)(372,451)(373,450)(374,449)(375,448)(376,447)(377,446)
(378,445)(379,444)(380,443)(381,442)(382,441)(383,440)(384,439)(385,438)
(386,437)(387,436)(388,435)(389,434)(390,433)(391,432)(392,431)(393,430)
(394,429)(395,428)(396,427)(397,426)(398,425)(399,424)(400,423)(401,422)
(402,421)(403,420)(404,419)(405,418)(406,417)(407,416)(408,415)(409,414)
(410,413)(452,453)(454,492)(455,491)(456,490)(457,489)(458,488)(459,487)
(460,486)(461,485)(462,484)(463,483)(464,482)(465,481)(466,480)(467,479)
(468,478)(469,477)(470,476)(471,475)(472,474);
poly := sub<Sym(492)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope