include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,82,2,3}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,82,2,3}*1968
if this polytope has a name.
Group : SmallGroup(1968,197)
Rank : 5
Schlafli Type : {2,82,2,3}
Number of vertices, edges, etc : 2, 82, 82, 3, 3
Order of s0s1s2s3s4 : 246
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,41,2,3}*984
41-fold quotients : {2,2,2,3}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4,43)( 5,42)( 6,41)( 7,40)( 8,39)( 9,38)(10,37)(11,36)(12,35)(13,34)
(14,33)(15,32)(16,31)(17,30)(18,29)(19,28)(20,27)(21,26)(22,25)(23,24)(45,84)
(46,83)(47,82)(48,81)(49,80)(50,79)(51,78)(52,77)(53,76)(54,75)(55,74)(56,73)
(57,72)(58,71)(59,70)(60,69)(61,68)(62,67)(63,66)(64,65);;
s2 := ( 3,45)( 4,44)( 5,84)( 6,83)( 7,82)( 8,81)( 9,80)(10,79)(11,78)(12,77)
(13,76)(14,75)(15,74)(16,73)(17,72)(18,71)(19,70)(20,69)(21,68)(22,67)(23,66)
(24,65)(25,64)(26,63)(27,62)(28,61)(29,60)(30,59)(31,58)(32,57)(33,56)(34,55)
(35,54)(36,53)(37,52)(38,51)(39,50)(40,49)(41,48)(42,47)(43,46);;
s3 := (86,87);;
s4 := (85,86);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(87)!(1,2);
s1 := Sym(87)!( 4,43)( 5,42)( 6,41)( 7,40)( 8,39)( 9,38)(10,37)(11,36)(12,35)
(13,34)(14,33)(15,32)(16,31)(17,30)(18,29)(19,28)(20,27)(21,26)(22,25)(23,24)
(45,84)(46,83)(47,82)(48,81)(49,80)(50,79)(51,78)(52,77)(53,76)(54,75)(55,74)
(56,73)(57,72)(58,71)(59,70)(60,69)(61,68)(62,67)(63,66)(64,65);
s2 := Sym(87)!( 3,45)( 4,44)( 5,84)( 6,83)( 7,82)( 8,81)( 9,80)(10,79)(11,78)
(12,77)(13,76)(14,75)(15,74)(16,73)(17,72)(18,71)(19,70)(20,69)(21,68)(22,67)
(23,66)(24,65)(25,64)(26,63)(27,62)(28,61)(29,60)(30,59)(31,58)(32,57)(33,56)
(34,55)(35,54)(36,53)(37,52)(38,51)(39,50)(40,49)(41,48)(42,47)(43,46);
s3 := Sym(87)!(86,87);
s4 := Sym(87)!(85,86);
poly := sub<Sym(87)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope