include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {166,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {166,6}*1992
Also Known As : {166,6|2}. if this polytope has another name.
Group : SmallGroup(1992,34)
Rank : 3
Schlafli Type : {166,6}
Number of vertices, edges, etc : 166, 498, 6
Order of s0s1s2 : 498
Order of s0s1s2s1 : 2
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {166,2}*664
6-fold quotients : {83,2}*332
83-fold quotients : {2,6}*24
166-fold quotients : {2,3}*12
249-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 83)( 3, 82)( 4, 81)( 5, 80)( 6, 79)( 7, 78)( 8, 77)( 9, 76)
( 10, 75)( 11, 74)( 12, 73)( 13, 72)( 14, 71)( 15, 70)( 16, 69)( 17, 68)
( 18, 67)( 19, 66)( 20, 65)( 21, 64)( 22, 63)( 23, 62)( 24, 61)( 25, 60)
( 26, 59)( 27, 58)( 28, 57)( 29, 56)( 30, 55)( 31, 54)( 32, 53)( 33, 52)
( 34, 51)( 35, 50)( 36, 49)( 37, 48)( 38, 47)( 39, 46)( 40, 45)( 41, 44)
( 42, 43)( 85,166)( 86,165)( 87,164)( 88,163)( 89,162)( 90,161)( 91,160)
( 92,159)( 93,158)( 94,157)( 95,156)( 96,155)( 97,154)( 98,153)( 99,152)
(100,151)(101,150)(102,149)(103,148)(104,147)(105,146)(106,145)(107,144)
(108,143)(109,142)(110,141)(111,140)(112,139)(113,138)(114,137)(115,136)
(116,135)(117,134)(118,133)(119,132)(120,131)(121,130)(122,129)(123,128)
(124,127)(125,126)(168,249)(169,248)(170,247)(171,246)(172,245)(173,244)
(174,243)(175,242)(176,241)(177,240)(178,239)(179,238)(180,237)(181,236)
(182,235)(183,234)(184,233)(185,232)(186,231)(187,230)(188,229)(189,228)
(190,227)(191,226)(192,225)(193,224)(194,223)(195,222)(196,221)(197,220)
(198,219)(199,218)(200,217)(201,216)(202,215)(203,214)(204,213)(205,212)
(206,211)(207,210)(208,209)(251,332)(252,331)(253,330)(254,329)(255,328)
(256,327)(257,326)(258,325)(259,324)(260,323)(261,322)(262,321)(263,320)
(264,319)(265,318)(266,317)(267,316)(268,315)(269,314)(270,313)(271,312)
(272,311)(273,310)(274,309)(275,308)(276,307)(277,306)(278,305)(279,304)
(280,303)(281,302)(282,301)(283,300)(284,299)(285,298)(286,297)(287,296)
(288,295)(289,294)(290,293)(291,292)(334,415)(335,414)(336,413)(337,412)
(338,411)(339,410)(340,409)(341,408)(342,407)(343,406)(344,405)(345,404)
(346,403)(347,402)(348,401)(349,400)(350,399)(351,398)(352,397)(353,396)
(354,395)(355,394)(356,393)(357,392)(358,391)(359,390)(360,389)(361,388)
(362,387)(363,386)(364,385)(365,384)(366,383)(367,382)(368,381)(369,380)
(370,379)(371,378)(372,377)(373,376)(374,375)(417,498)(418,497)(419,496)
(420,495)(421,494)(422,493)(423,492)(424,491)(425,490)(426,489)(427,488)
(428,487)(429,486)(430,485)(431,484)(432,483)(433,482)(434,481)(435,480)
(436,479)(437,478)(438,477)(439,476)(440,475)(441,474)(442,473)(443,472)
(444,471)(445,470)(446,469)(447,468)(448,467)(449,466)(450,465)(451,464)
(452,463)(453,462)(454,461)(455,460)(456,459)(457,458);;
s1 := ( 1, 2)( 3, 83)( 4, 82)( 5, 81)( 6, 80)( 7, 79)( 8, 78)( 9, 77)
( 10, 76)( 11, 75)( 12, 74)( 13, 73)( 14, 72)( 15, 71)( 16, 70)( 17, 69)
( 18, 68)( 19, 67)( 20, 66)( 21, 65)( 22, 64)( 23, 63)( 24, 62)( 25, 61)
( 26, 60)( 27, 59)( 28, 58)( 29, 57)( 30, 56)( 31, 55)( 32, 54)( 33, 53)
( 34, 52)( 35, 51)( 36, 50)( 37, 49)( 38, 48)( 39, 47)( 40, 46)( 41, 45)
( 42, 44)( 84,168)( 85,167)( 86,249)( 87,248)( 88,247)( 89,246)( 90,245)
( 91,244)( 92,243)( 93,242)( 94,241)( 95,240)( 96,239)( 97,238)( 98,237)
( 99,236)(100,235)(101,234)(102,233)(103,232)(104,231)(105,230)(106,229)
(107,228)(108,227)(109,226)(110,225)(111,224)(112,223)(113,222)(114,221)
(115,220)(116,219)(117,218)(118,217)(119,216)(120,215)(121,214)(122,213)
(123,212)(124,211)(125,210)(126,209)(127,208)(128,207)(129,206)(130,205)
(131,204)(132,203)(133,202)(134,201)(135,200)(136,199)(137,198)(138,197)
(139,196)(140,195)(141,194)(142,193)(143,192)(144,191)(145,190)(146,189)
(147,188)(148,187)(149,186)(150,185)(151,184)(152,183)(153,182)(154,181)
(155,180)(156,179)(157,178)(158,177)(159,176)(160,175)(161,174)(162,173)
(163,172)(164,171)(165,170)(166,169)(250,251)(252,332)(253,331)(254,330)
(255,329)(256,328)(257,327)(258,326)(259,325)(260,324)(261,323)(262,322)
(263,321)(264,320)(265,319)(266,318)(267,317)(268,316)(269,315)(270,314)
(271,313)(272,312)(273,311)(274,310)(275,309)(276,308)(277,307)(278,306)
(279,305)(280,304)(281,303)(282,302)(283,301)(284,300)(285,299)(286,298)
(287,297)(288,296)(289,295)(290,294)(291,293)(333,417)(334,416)(335,498)
(336,497)(337,496)(338,495)(339,494)(340,493)(341,492)(342,491)(343,490)
(344,489)(345,488)(346,487)(347,486)(348,485)(349,484)(350,483)(351,482)
(352,481)(353,480)(354,479)(355,478)(356,477)(357,476)(358,475)(359,474)
(360,473)(361,472)(362,471)(363,470)(364,469)(365,468)(366,467)(367,466)
(368,465)(369,464)(370,463)(371,462)(372,461)(373,460)(374,459)(375,458)
(376,457)(377,456)(378,455)(379,454)(380,453)(381,452)(382,451)(383,450)
(384,449)(385,448)(386,447)(387,446)(388,445)(389,444)(390,443)(391,442)
(392,441)(393,440)(394,439)(395,438)(396,437)(397,436)(398,435)(399,434)
(400,433)(401,432)(402,431)(403,430)(404,429)(405,428)(406,427)(407,426)
(408,425)(409,424)(410,423)(411,422)(412,421)(413,420)(414,419)(415,418);;
s2 := ( 1,333)( 2,334)( 3,335)( 4,336)( 5,337)( 6,338)( 7,339)( 8,340)
( 9,341)( 10,342)( 11,343)( 12,344)( 13,345)( 14,346)( 15,347)( 16,348)
( 17,349)( 18,350)( 19,351)( 20,352)( 21,353)( 22,354)( 23,355)( 24,356)
( 25,357)( 26,358)( 27,359)( 28,360)( 29,361)( 30,362)( 31,363)( 32,364)
( 33,365)( 34,366)( 35,367)( 36,368)( 37,369)( 38,370)( 39,371)( 40,372)
( 41,373)( 42,374)( 43,375)( 44,376)( 45,377)( 46,378)( 47,379)( 48,380)
( 49,381)( 50,382)( 51,383)( 52,384)( 53,385)( 54,386)( 55,387)( 56,388)
( 57,389)( 58,390)( 59,391)( 60,392)( 61,393)( 62,394)( 63,395)( 64,396)
( 65,397)( 66,398)( 67,399)( 68,400)( 69,401)( 70,402)( 71,403)( 72,404)
( 73,405)( 74,406)( 75,407)( 76,408)( 77,409)( 78,410)( 79,411)( 80,412)
( 81,413)( 82,414)( 83,415)( 84,250)( 85,251)( 86,252)( 87,253)( 88,254)
( 89,255)( 90,256)( 91,257)( 92,258)( 93,259)( 94,260)( 95,261)( 96,262)
( 97,263)( 98,264)( 99,265)(100,266)(101,267)(102,268)(103,269)(104,270)
(105,271)(106,272)(107,273)(108,274)(109,275)(110,276)(111,277)(112,278)
(113,279)(114,280)(115,281)(116,282)(117,283)(118,284)(119,285)(120,286)
(121,287)(122,288)(123,289)(124,290)(125,291)(126,292)(127,293)(128,294)
(129,295)(130,296)(131,297)(132,298)(133,299)(134,300)(135,301)(136,302)
(137,303)(138,304)(139,305)(140,306)(141,307)(142,308)(143,309)(144,310)
(145,311)(146,312)(147,313)(148,314)(149,315)(150,316)(151,317)(152,318)
(153,319)(154,320)(155,321)(156,322)(157,323)(158,324)(159,325)(160,326)
(161,327)(162,328)(163,329)(164,330)(165,331)(166,332)(167,416)(168,417)
(169,418)(170,419)(171,420)(172,421)(173,422)(174,423)(175,424)(176,425)
(177,426)(178,427)(179,428)(180,429)(181,430)(182,431)(183,432)(184,433)
(185,434)(186,435)(187,436)(188,437)(189,438)(190,439)(191,440)(192,441)
(193,442)(194,443)(195,444)(196,445)(197,446)(198,447)(199,448)(200,449)
(201,450)(202,451)(203,452)(204,453)(205,454)(206,455)(207,456)(208,457)
(209,458)(210,459)(211,460)(212,461)(213,462)(214,463)(215,464)(216,465)
(217,466)(218,467)(219,468)(220,469)(221,470)(222,471)(223,472)(224,473)
(225,474)(226,475)(227,476)(228,477)(229,478)(230,479)(231,480)(232,481)
(233,482)(234,483)(235,484)(236,485)(237,486)(238,487)(239,488)(240,489)
(241,490)(242,491)(243,492)(244,493)(245,494)(246,495)(247,496)(248,497)
(249,498);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(498)!( 2, 83)( 3, 82)( 4, 81)( 5, 80)( 6, 79)( 7, 78)( 8, 77)
( 9, 76)( 10, 75)( 11, 74)( 12, 73)( 13, 72)( 14, 71)( 15, 70)( 16, 69)
( 17, 68)( 18, 67)( 19, 66)( 20, 65)( 21, 64)( 22, 63)( 23, 62)( 24, 61)
( 25, 60)( 26, 59)( 27, 58)( 28, 57)( 29, 56)( 30, 55)( 31, 54)( 32, 53)
( 33, 52)( 34, 51)( 35, 50)( 36, 49)( 37, 48)( 38, 47)( 39, 46)( 40, 45)
( 41, 44)( 42, 43)( 85,166)( 86,165)( 87,164)( 88,163)( 89,162)( 90,161)
( 91,160)( 92,159)( 93,158)( 94,157)( 95,156)( 96,155)( 97,154)( 98,153)
( 99,152)(100,151)(101,150)(102,149)(103,148)(104,147)(105,146)(106,145)
(107,144)(108,143)(109,142)(110,141)(111,140)(112,139)(113,138)(114,137)
(115,136)(116,135)(117,134)(118,133)(119,132)(120,131)(121,130)(122,129)
(123,128)(124,127)(125,126)(168,249)(169,248)(170,247)(171,246)(172,245)
(173,244)(174,243)(175,242)(176,241)(177,240)(178,239)(179,238)(180,237)
(181,236)(182,235)(183,234)(184,233)(185,232)(186,231)(187,230)(188,229)
(189,228)(190,227)(191,226)(192,225)(193,224)(194,223)(195,222)(196,221)
(197,220)(198,219)(199,218)(200,217)(201,216)(202,215)(203,214)(204,213)
(205,212)(206,211)(207,210)(208,209)(251,332)(252,331)(253,330)(254,329)
(255,328)(256,327)(257,326)(258,325)(259,324)(260,323)(261,322)(262,321)
(263,320)(264,319)(265,318)(266,317)(267,316)(268,315)(269,314)(270,313)
(271,312)(272,311)(273,310)(274,309)(275,308)(276,307)(277,306)(278,305)
(279,304)(280,303)(281,302)(282,301)(283,300)(284,299)(285,298)(286,297)
(287,296)(288,295)(289,294)(290,293)(291,292)(334,415)(335,414)(336,413)
(337,412)(338,411)(339,410)(340,409)(341,408)(342,407)(343,406)(344,405)
(345,404)(346,403)(347,402)(348,401)(349,400)(350,399)(351,398)(352,397)
(353,396)(354,395)(355,394)(356,393)(357,392)(358,391)(359,390)(360,389)
(361,388)(362,387)(363,386)(364,385)(365,384)(366,383)(367,382)(368,381)
(369,380)(370,379)(371,378)(372,377)(373,376)(374,375)(417,498)(418,497)
(419,496)(420,495)(421,494)(422,493)(423,492)(424,491)(425,490)(426,489)
(427,488)(428,487)(429,486)(430,485)(431,484)(432,483)(433,482)(434,481)
(435,480)(436,479)(437,478)(438,477)(439,476)(440,475)(441,474)(442,473)
(443,472)(444,471)(445,470)(446,469)(447,468)(448,467)(449,466)(450,465)
(451,464)(452,463)(453,462)(454,461)(455,460)(456,459)(457,458);
s1 := Sym(498)!( 1, 2)( 3, 83)( 4, 82)( 5, 81)( 6, 80)( 7, 79)( 8, 78)
( 9, 77)( 10, 76)( 11, 75)( 12, 74)( 13, 73)( 14, 72)( 15, 71)( 16, 70)
( 17, 69)( 18, 68)( 19, 67)( 20, 66)( 21, 65)( 22, 64)( 23, 63)( 24, 62)
( 25, 61)( 26, 60)( 27, 59)( 28, 58)( 29, 57)( 30, 56)( 31, 55)( 32, 54)
( 33, 53)( 34, 52)( 35, 51)( 36, 50)( 37, 49)( 38, 48)( 39, 47)( 40, 46)
( 41, 45)( 42, 44)( 84,168)( 85,167)( 86,249)( 87,248)( 88,247)( 89,246)
( 90,245)( 91,244)( 92,243)( 93,242)( 94,241)( 95,240)( 96,239)( 97,238)
( 98,237)( 99,236)(100,235)(101,234)(102,233)(103,232)(104,231)(105,230)
(106,229)(107,228)(108,227)(109,226)(110,225)(111,224)(112,223)(113,222)
(114,221)(115,220)(116,219)(117,218)(118,217)(119,216)(120,215)(121,214)
(122,213)(123,212)(124,211)(125,210)(126,209)(127,208)(128,207)(129,206)
(130,205)(131,204)(132,203)(133,202)(134,201)(135,200)(136,199)(137,198)
(138,197)(139,196)(140,195)(141,194)(142,193)(143,192)(144,191)(145,190)
(146,189)(147,188)(148,187)(149,186)(150,185)(151,184)(152,183)(153,182)
(154,181)(155,180)(156,179)(157,178)(158,177)(159,176)(160,175)(161,174)
(162,173)(163,172)(164,171)(165,170)(166,169)(250,251)(252,332)(253,331)
(254,330)(255,329)(256,328)(257,327)(258,326)(259,325)(260,324)(261,323)
(262,322)(263,321)(264,320)(265,319)(266,318)(267,317)(268,316)(269,315)
(270,314)(271,313)(272,312)(273,311)(274,310)(275,309)(276,308)(277,307)
(278,306)(279,305)(280,304)(281,303)(282,302)(283,301)(284,300)(285,299)
(286,298)(287,297)(288,296)(289,295)(290,294)(291,293)(333,417)(334,416)
(335,498)(336,497)(337,496)(338,495)(339,494)(340,493)(341,492)(342,491)
(343,490)(344,489)(345,488)(346,487)(347,486)(348,485)(349,484)(350,483)
(351,482)(352,481)(353,480)(354,479)(355,478)(356,477)(357,476)(358,475)
(359,474)(360,473)(361,472)(362,471)(363,470)(364,469)(365,468)(366,467)
(367,466)(368,465)(369,464)(370,463)(371,462)(372,461)(373,460)(374,459)
(375,458)(376,457)(377,456)(378,455)(379,454)(380,453)(381,452)(382,451)
(383,450)(384,449)(385,448)(386,447)(387,446)(388,445)(389,444)(390,443)
(391,442)(392,441)(393,440)(394,439)(395,438)(396,437)(397,436)(398,435)
(399,434)(400,433)(401,432)(402,431)(403,430)(404,429)(405,428)(406,427)
(407,426)(408,425)(409,424)(410,423)(411,422)(412,421)(413,420)(414,419)
(415,418);
s2 := Sym(498)!( 1,333)( 2,334)( 3,335)( 4,336)( 5,337)( 6,338)( 7,339)
( 8,340)( 9,341)( 10,342)( 11,343)( 12,344)( 13,345)( 14,346)( 15,347)
( 16,348)( 17,349)( 18,350)( 19,351)( 20,352)( 21,353)( 22,354)( 23,355)
( 24,356)( 25,357)( 26,358)( 27,359)( 28,360)( 29,361)( 30,362)( 31,363)
( 32,364)( 33,365)( 34,366)( 35,367)( 36,368)( 37,369)( 38,370)( 39,371)
( 40,372)( 41,373)( 42,374)( 43,375)( 44,376)( 45,377)( 46,378)( 47,379)
( 48,380)( 49,381)( 50,382)( 51,383)( 52,384)( 53,385)( 54,386)( 55,387)
( 56,388)( 57,389)( 58,390)( 59,391)( 60,392)( 61,393)( 62,394)( 63,395)
( 64,396)( 65,397)( 66,398)( 67,399)( 68,400)( 69,401)( 70,402)( 71,403)
( 72,404)( 73,405)( 74,406)( 75,407)( 76,408)( 77,409)( 78,410)( 79,411)
( 80,412)( 81,413)( 82,414)( 83,415)( 84,250)( 85,251)( 86,252)( 87,253)
( 88,254)( 89,255)( 90,256)( 91,257)( 92,258)( 93,259)( 94,260)( 95,261)
( 96,262)( 97,263)( 98,264)( 99,265)(100,266)(101,267)(102,268)(103,269)
(104,270)(105,271)(106,272)(107,273)(108,274)(109,275)(110,276)(111,277)
(112,278)(113,279)(114,280)(115,281)(116,282)(117,283)(118,284)(119,285)
(120,286)(121,287)(122,288)(123,289)(124,290)(125,291)(126,292)(127,293)
(128,294)(129,295)(130,296)(131,297)(132,298)(133,299)(134,300)(135,301)
(136,302)(137,303)(138,304)(139,305)(140,306)(141,307)(142,308)(143,309)
(144,310)(145,311)(146,312)(147,313)(148,314)(149,315)(150,316)(151,317)
(152,318)(153,319)(154,320)(155,321)(156,322)(157,323)(158,324)(159,325)
(160,326)(161,327)(162,328)(163,329)(164,330)(165,331)(166,332)(167,416)
(168,417)(169,418)(170,419)(171,420)(172,421)(173,422)(174,423)(175,424)
(176,425)(177,426)(178,427)(179,428)(180,429)(181,430)(182,431)(183,432)
(184,433)(185,434)(186,435)(187,436)(188,437)(189,438)(190,439)(191,440)
(192,441)(193,442)(194,443)(195,444)(196,445)(197,446)(198,447)(199,448)
(200,449)(201,450)(202,451)(203,452)(204,453)(205,454)(206,455)(207,456)
(208,457)(209,458)(210,459)(211,460)(212,461)(213,462)(214,463)(215,464)
(216,465)(217,466)(218,467)(219,468)(220,469)(221,470)(222,471)(223,472)
(224,473)(225,474)(226,475)(227,476)(228,477)(229,478)(230,479)(231,480)
(232,481)(233,482)(234,483)(235,484)(236,485)(237,486)(238,487)(239,488)
(240,489)(241,490)(242,491)(243,492)(244,493)(245,494)(246,495)(247,496)
(248,497)(249,498);
poly := sub<Sym(498)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope