Polytope of Type {20,50}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {20,50}*2000b
if this polytope has a name.
Group : SmallGroup(2000,386)
Rank : 3
Schlafli Type : {20,50}
Number of vertices, edges, etc : 20, 500, 50
Order of s0s1s2 : 100
Order of s0s1s2s1 : 10
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {10,50}*1000b
   4-fold quotients : {10,25}*500
   5-fold quotients : {4,50}*400, {20,10}*400c
   10-fold quotients : {2,50}*200, {10,10}*200b
   20-fold quotients : {2,25}*100, {10,5}*100
   25-fold quotients : {4,10}*80
   50-fold quotients : {2,10}*40
   100-fold quotients : {2,5}*20
   125-fold quotients : {4,2}*16
   250-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  6, 21)(  7, 22)(  8, 23)(  9, 24)( 10, 25)( 11, 16)( 12, 17)( 13, 18)
( 14, 19)( 15, 20)( 31, 46)( 32, 47)( 33, 48)( 34, 49)( 35, 50)( 36, 41)
( 37, 42)( 38, 43)( 39, 44)( 40, 45)( 56, 71)( 57, 72)( 58, 73)( 59, 74)
( 60, 75)( 61, 66)( 62, 67)( 63, 68)( 64, 69)( 65, 70)( 81, 96)( 82, 97)
( 83, 98)( 84, 99)( 85,100)( 86, 91)( 87, 92)( 88, 93)( 89, 94)( 90, 95)
(106,121)(107,122)(108,123)(109,124)(110,125)(111,116)(112,117)(113,118)
(114,119)(115,120)(131,146)(132,147)(133,148)(134,149)(135,150)(136,141)
(137,142)(138,143)(139,144)(140,145)(156,171)(157,172)(158,173)(159,174)
(160,175)(161,166)(162,167)(163,168)(164,169)(165,170)(181,196)(182,197)
(183,198)(184,199)(185,200)(186,191)(187,192)(188,193)(189,194)(190,195)
(206,221)(207,222)(208,223)(209,224)(210,225)(211,216)(212,217)(213,218)
(214,219)(215,220)(231,246)(232,247)(233,248)(234,249)(235,250)(236,241)
(237,242)(238,243)(239,244)(240,245)(251,376)(252,377)(253,378)(254,379)
(255,380)(256,396)(257,397)(258,398)(259,399)(260,400)(261,391)(262,392)
(263,393)(264,394)(265,395)(266,386)(267,387)(268,388)(269,389)(270,390)
(271,381)(272,382)(273,383)(274,384)(275,385)(276,401)(277,402)(278,403)
(279,404)(280,405)(281,421)(282,422)(283,423)(284,424)(285,425)(286,416)
(287,417)(288,418)(289,419)(290,420)(291,411)(292,412)(293,413)(294,414)
(295,415)(296,406)(297,407)(298,408)(299,409)(300,410)(301,426)(302,427)
(303,428)(304,429)(305,430)(306,446)(307,447)(308,448)(309,449)(310,450)
(311,441)(312,442)(313,443)(314,444)(315,445)(316,436)(317,437)(318,438)
(319,439)(320,440)(321,431)(322,432)(323,433)(324,434)(325,435)(326,451)
(327,452)(328,453)(329,454)(330,455)(331,471)(332,472)(333,473)(334,474)
(335,475)(336,466)(337,467)(338,468)(339,469)(340,470)(341,461)(342,462)
(343,463)(344,464)(345,465)(346,456)(347,457)(348,458)(349,459)(350,460)
(351,476)(352,477)(353,478)(354,479)(355,480)(356,496)(357,497)(358,498)
(359,499)(360,500)(361,491)(362,492)(363,493)(364,494)(365,495)(366,486)
(367,487)(368,488)(369,489)(370,490)(371,481)(372,482)(373,483)(374,484)
(375,485);;
s1 := (  1,256)(  2,260)(  3,259)(  4,258)(  5,257)(  6,251)(  7,255)(  8,254)
(  9,253)( 10,252)( 11,271)( 12,275)( 13,274)( 14,273)( 15,272)( 16,266)
( 17,270)( 18,269)( 19,268)( 20,267)( 21,261)( 22,265)( 23,264)( 24,263)
( 25,262)( 26,360)( 27,359)( 28,358)( 29,357)( 30,356)( 31,355)( 32,354)
( 33,353)( 34,352)( 35,351)( 36,375)( 37,374)( 38,373)( 39,372)( 40,371)
( 41,370)( 42,369)( 43,368)( 44,367)( 45,366)( 46,365)( 47,364)( 48,363)
( 49,362)( 50,361)( 51,335)( 52,334)( 53,333)( 54,332)( 55,331)( 56,330)
( 57,329)( 58,328)( 59,327)( 60,326)( 61,350)( 62,349)( 63,348)( 64,347)
( 65,346)( 66,345)( 67,344)( 68,343)( 69,342)( 70,341)( 71,340)( 72,339)
( 73,338)( 74,337)( 75,336)( 76,310)( 77,309)( 78,308)( 79,307)( 80,306)
( 81,305)( 82,304)( 83,303)( 84,302)( 85,301)( 86,325)( 87,324)( 88,323)
( 89,322)( 90,321)( 91,320)( 92,319)( 93,318)( 94,317)( 95,316)( 96,315)
( 97,314)( 98,313)( 99,312)(100,311)(101,285)(102,284)(103,283)(104,282)
(105,281)(106,280)(107,279)(108,278)(109,277)(110,276)(111,300)(112,299)
(113,298)(114,297)(115,296)(116,295)(117,294)(118,293)(119,292)(120,291)
(121,290)(122,289)(123,288)(124,287)(125,286)(126,381)(127,385)(128,384)
(129,383)(130,382)(131,376)(132,380)(133,379)(134,378)(135,377)(136,396)
(137,400)(138,399)(139,398)(140,397)(141,391)(142,395)(143,394)(144,393)
(145,392)(146,386)(147,390)(148,389)(149,388)(150,387)(151,485)(152,484)
(153,483)(154,482)(155,481)(156,480)(157,479)(158,478)(159,477)(160,476)
(161,500)(162,499)(163,498)(164,497)(165,496)(166,495)(167,494)(168,493)
(169,492)(170,491)(171,490)(172,489)(173,488)(174,487)(175,486)(176,460)
(177,459)(178,458)(179,457)(180,456)(181,455)(182,454)(183,453)(184,452)
(185,451)(186,475)(187,474)(188,473)(189,472)(190,471)(191,470)(192,469)
(193,468)(194,467)(195,466)(196,465)(197,464)(198,463)(199,462)(200,461)
(201,435)(202,434)(203,433)(204,432)(205,431)(206,430)(207,429)(208,428)
(209,427)(210,426)(211,450)(212,449)(213,448)(214,447)(215,446)(216,445)
(217,444)(218,443)(219,442)(220,441)(221,440)(222,439)(223,438)(224,437)
(225,436)(226,410)(227,409)(228,408)(229,407)(230,406)(231,405)(232,404)
(233,403)(234,402)(235,401)(236,425)(237,424)(238,423)(239,422)(240,421)
(241,420)(242,419)(243,418)(244,417)(245,416)(246,415)(247,414)(248,413)
(249,412)(250,411);;
s2 := (  1, 26)(  2, 30)(  3, 29)(  4, 28)(  5, 27)(  6, 46)(  7, 50)(  8, 49)
(  9, 48)( 10, 47)( 11, 41)( 12, 45)( 13, 44)( 14, 43)( 15, 42)( 16, 36)
( 17, 40)( 18, 39)( 19, 38)( 20, 37)( 21, 31)( 22, 35)( 23, 34)( 24, 33)
( 25, 32)( 51,105)( 52,104)( 53,103)( 54,102)( 55,101)( 56,125)( 57,124)
( 58,123)( 59,122)( 60,121)( 61,120)( 62,119)( 63,118)( 64,117)( 65,116)
( 66,115)( 67,114)( 68,113)( 69,112)( 70,111)( 71,110)( 72,109)( 73,108)
( 74,107)( 75,106)( 76, 80)( 77, 79)( 81,100)( 82, 99)( 83, 98)( 84, 97)
( 85, 96)( 86, 95)( 87, 94)( 88, 93)( 89, 92)( 90, 91)(126,151)(127,155)
(128,154)(129,153)(130,152)(131,171)(132,175)(133,174)(134,173)(135,172)
(136,166)(137,170)(138,169)(139,168)(140,167)(141,161)(142,165)(143,164)
(144,163)(145,162)(146,156)(147,160)(148,159)(149,158)(150,157)(176,230)
(177,229)(178,228)(179,227)(180,226)(181,250)(182,249)(183,248)(184,247)
(185,246)(186,245)(187,244)(188,243)(189,242)(190,241)(191,240)(192,239)
(193,238)(194,237)(195,236)(196,235)(197,234)(198,233)(199,232)(200,231)
(201,205)(202,204)(206,225)(207,224)(208,223)(209,222)(210,221)(211,220)
(212,219)(213,218)(214,217)(215,216)(251,276)(252,280)(253,279)(254,278)
(255,277)(256,296)(257,300)(258,299)(259,298)(260,297)(261,291)(262,295)
(263,294)(264,293)(265,292)(266,286)(267,290)(268,289)(269,288)(270,287)
(271,281)(272,285)(273,284)(274,283)(275,282)(301,355)(302,354)(303,353)
(304,352)(305,351)(306,375)(307,374)(308,373)(309,372)(310,371)(311,370)
(312,369)(313,368)(314,367)(315,366)(316,365)(317,364)(318,363)(319,362)
(320,361)(321,360)(322,359)(323,358)(324,357)(325,356)(326,330)(327,329)
(331,350)(332,349)(333,348)(334,347)(335,346)(336,345)(337,344)(338,343)
(339,342)(340,341)(376,401)(377,405)(378,404)(379,403)(380,402)(381,421)
(382,425)(383,424)(384,423)(385,422)(386,416)(387,420)(388,419)(389,418)
(390,417)(391,411)(392,415)(393,414)(394,413)(395,412)(396,406)(397,410)
(398,409)(399,408)(400,407)(426,480)(427,479)(428,478)(429,477)(430,476)
(431,500)(432,499)(433,498)(434,497)(435,496)(436,495)(437,494)(438,493)
(439,492)(440,491)(441,490)(442,489)(443,488)(444,487)(445,486)(446,485)
(447,484)(448,483)(449,482)(450,481)(451,455)(452,454)(456,475)(457,474)
(458,473)(459,472)(460,471)(461,470)(462,469)(463,468)(464,467)(465,466);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(500)!(  6, 21)(  7, 22)(  8, 23)(  9, 24)( 10, 25)( 11, 16)( 12, 17)
( 13, 18)( 14, 19)( 15, 20)( 31, 46)( 32, 47)( 33, 48)( 34, 49)( 35, 50)
( 36, 41)( 37, 42)( 38, 43)( 39, 44)( 40, 45)( 56, 71)( 57, 72)( 58, 73)
( 59, 74)( 60, 75)( 61, 66)( 62, 67)( 63, 68)( 64, 69)( 65, 70)( 81, 96)
( 82, 97)( 83, 98)( 84, 99)( 85,100)( 86, 91)( 87, 92)( 88, 93)( 89, 94)
( 90, 95)(106,121)(107,122)(108,123)(109,124)(110,125)(111,116)(112,117)
(113,118)(114,119)(115,120)(131,146)(132,147)(133,148)(134,149)(135,150)
(136,141)(137,142)(138,143)(139,144)(140,145)(156,171)(157,172)(158,173)
(159,174)(160,175)(161,166)(162,167)(163,168)(164,169)(165,170)(181,196)
(182,197)(183,198)(184,199)(185,200)(186,191)(187,192)(188,193)(189,194)
(190,195)(206,221)(207,222)(208,223)(209,224)(210,225)(211,216)(212,217)
(213,218)(214,219)(215,220)(231,246)(232,247)(233,248)(234,249)(235,250)
(236,241)(237,242)(238,243)(239,244)(240,245)(251,376)(252,377)(253,378)
(254,379)(255,380)(256,396)(257,397)(258,398)(259,399)(260,400)(261,391)
(262,392)(263,393)(264,394)(265,395)(266,386)(267,387)(268,388)(269,389)
(270,390)(271,381)(272,382)(273,383)(274,384)(275,385)(276,401)(277,402)
(278,403)(279,404)(280,405)(281,421)(282,422)(283,423)(284,424)(285,425)
(286,416)(287,417)(288,418)(289,419)(290,420)(291,411)(292,412)(293,413)
(294,414)(295,415)(296,406)(297,407)(298,408)(299,409)(300,410)(301,426)
(302,427)(303,428)(304,429)(305,430)(306,446)(307,447)(308,448)(309,449)
(310,450)(311,441)(312,442)(313,443)(314,444)(315,445)(316,436)(317,437)
(318,438)(319,439)(320,440)(321,431)(322,432)(323,433)(324,434)(325,435)
(326,451)(327,452)(328,453)(329,454)(330,455)(331,471)(332,472)(333,473)
(334,474)(335,475)(336,466)(337,467)(338,468)(339,469)(340,470)(341,461)
(342,462)(343,463)(344,464)(345,465)(346,456)(347,457)(348,458)(349,459)
(350,460)(351,476)(352,477)(353,478)(354,479)(355,480)(356,496)(357,497)
(358,498)(359,499)(360,500)(361,491)(362,492)(363,493)(364,494)(365,495)
(366,486)(367,487)(368,488)(369,489)(370,490)(371,481)(372,482)(373,483)
(374,484)(375,485);
s1 := Sym(500)!(  1,256)(  2,260)(  3,259)(  4,258)(  5,257)(  6,251)(  7,255)
(  8,254)(  9,253)( 10,252)( 11,271)( 12,275)( 13,274)( 14,273)( 15,272)
( 16,266)( 17,270)( 18,269)( 19,268)( 20,267)( 21,261)( 22,265)( 23,264)
( 24,263)( 25,262)( 26,360)( 27,359)( 28,358)( 29,357)( 30,356)( 31,355)
( 32,354)( 33,353)( 34,352)( 35,351)( 36,375)( 37,374)( 38,373)( 39,372)
( 40,371)( 41,370)( 42,369)( 43,368)( 44,367)( 45,366)( 46,365)( 47,364)
( 48,363)( 49,362)( 50,361)( 51,335)( 52,334)( 53,333)( 54,332)( 55,331)
( 56,330)( 57,329)( 58,328)( 59,327)( 60,326)( 61,350)( 62,349)( 63,348)
( 64,347)( 65,346)( 66,345)( 67,344)( 68,343)( 69,342)( 70,341)( 71,340)
( 72,339)( 73,338)( 74,337)( 75,336)( 76,310)( 77,309)( 78,308)( 79,307)
( 80,306)( 81,305)( 82,304)( 83,303)( 84,302)( 85,301)( 86,325)( 87,324)
( 88,323)( 89,322)( 90,321)( 91,320)( 92,319)( 93,318)( 94,317)( 95,316)
( 96,315)( 97,314)( 98,313)( 99,312)(100,311)(101,285)(102,284)(103,283)
(104,282)(105,281)(106,280)(107,279)(108,278)(109,277)(110,276)(111,300)
(112,299)(113,298)(114,297)(115,296)(116,295)(117,294)(118,293)(119,292)
(120,291)(121,290)(122,289)(123,288)(124,287)(125,286)(126,381)(127,385)
(128,384)(129,383)(130,382)(131,376)(132,380)(133,379)(134,378)(135,377)
(136,396)(137,400)(138,399)(139,398)(140,397)(141,391)(142,395)(143,394)
(144,393)(145,392)(146,386)(147,390)(148,389)(149,388)(150,387)(151,485)
(152,484)(153,483)(154,482)(155,481)(156,480)(157,479)(158,478)(159,477)
(160,476)(161,500)(162,499)(163,498)(164,497)(165,496)(166,495)(167,494)
(168,493)(169,492)(170,491)(171,490)(172,489)(173,488)(174,487)(175,486)
(176,460)(177,459)(178,458)(179,457)(180,456)(181,455)(182,454)(183,453)
(184,452)(185,451)(186,475)(187,474)(188,473)(189,472)(190,471)(191,470)
(192,469)(193,468)(194,467)(195,466)(196,465)(197,464)(198,463)(199,462)
(200,461)(201,435)(202,434)(203,433)(204,432)(205,431)(206,430)(207,429)
(208,428)(209,427)(210,426)(211,450)(212,449)(213,448)(214,447)(215,446)
(216,445)(217,444)(218,443)(219,442)(220,441)(221,440)(222,439)(223,438)
(224,437)(225,436)(226,410)(227,409)(228,408)(229,407)(230,406)(231,405)
(232,404)(233,403)(234,402)(235,401)(236,425)(237,424)(238,423)(239,422)
(240,421)(241,420)(242,419)(243,418)(244,417)(245,416)(246,415)(247,414)
(248,413)(249,412)(250,411);
s2 := Sym(500)!(  1, 26)(  2, 30)(  3, 29)(  4, 28)(  5, 27)(  6, 46)(  7, 50)
(  8, 49)(  9, 48)( 10, 47)( 11, 41)( 12, 45)( 13, 44)( 14, 43)( 15, 42)
( 16, 36)( 17, 40)( 18, 39)( 19, 38)( 20, 37)( 21, 31)( 22, 35)( 23, 34)
( 24, 33)( 25, 32)( 51,105)( 52,104)( 53,103)( 54,102)( 55,101)( 56,125)
( 57,124)( 58,123)( 59,122)( 60,121)( 61,120)( 62,119)( 63,118)( 64,117)
( 65,116)( 66,115)( 67,114)( 68,113)( 69,112)( 70,111)( 71,110)( 72,109)
( 73,108)( 74,107)( 75,106)( 76, 80)( 77, 79)( 81,100)( 82, 99)( 83, 98)
( 84, 97)( 85, 96)( 86, 95)( 87, 94)( 88, 93)( 89, 92)( 90, 91)(126,151)
(127,155)(128,154)(129,153)(130,152)(131,171)(132,175)(133,174)(134,173)
(135,172)(136,166)(137,170)(138,169)(139,168)(140,167)(141,161)(142,165)
(143,164)(144,163)(145,162)(146,156)(147,160)(148,159)(149,158)(150,157)
(176,230)(177,229)(178,228)(179,227)(180,226)(181,250)(182,249)(183,248)
(184,247)(185,246)(186,245)(187,244)(188,243)(189,242)(190,241)(191,240)
(192,239)(193,238)(194,237)(195,236)(196,235)(197,234)(198,233)(199,232)
(200,231)(201,205)(202,204)(206,225)(207,224)(208,223)(209,222)(210,221)
(211,220)(212,219)(213,218)(214,217)(215,216)(251,276)(252,280)(253,279)
(254,278)(255,277)(256,296)(257,300)(258,299)(259,298)(260,297)(261,291)
(262,295)(263,294)(264,293)(265,292)(266,286)(267,290)(268,289)(269,288)
(270,287)(271,281)(272,285)(273,284)(274,283)(275,282)(301,355)(302,354)
(303,353)(304,352)(305,351)(306,375)(307,374)(308,373)(309,372)(310,371)
(311,370)(312,369)(313,368)(314,367)(315,366)(316,365)(317,364)(318,363)
(319,362)(320,361)(321,360)(322,359)(323,358)(324,357)(325,356)(326,330)
(327,329)(331,350)(332,349)(333,348)(334,347)(335,346)(336,345)(337,344)
(338,343)(339,342)(340,341)(376,401)(377,405)(378,404)(379,403)(380,402)
(381,421)(382,425)(383,424)(384,423)(385,422)(386,416)(387,420)(388,419)
(389,418)(390,417)(391,411)(392,415)(393,414)(394,413)(395,412)(396,406)
(397,410)(398,409)(399,408)(400,407)(426,480)(427,479)(428,478)(429,477)
(430,476)(431,500)(432,499)(433,498)(434,497)(435,496)(436,495)(437,494)
(438,493)(439,492)(440,491)(441,490)(442,489)(443,488)(444,487)(445,486)
(446,485)(447,484)(448,483)(449,482)(450,481)(451,455)(452,454)(456,475)
(457,474)(458,473)(459,472)(460,471)(461,470)(462,469)(463,468)(464,467)
(465,466);
poly := sub<Sym(500)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope