include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,20,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,20,2}*2000
if this polytope has a name.
Group : SmallGroup(2000,482)
Rank : 4
Schlafli Type : {4,20,2}
Number of vertices, edges, etc : 25, 250, 125, 2
Order of s0s1s2s3 : 10
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
5-fold quotients : {4,4,2}*400
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 5)( 3, 4)( 6, 32)( 7, 31)( 8, 35)( 9, 34)( 10, 33)( 11, 64)
( 12, 63)( 13, 62)( 14, 61)( 15, 65)( 16, 92)( 17, 91)( 18, 95)( 19, 94)
( 20, 93)( 21,121)( 22,125)( 23,124)( 24,123)( 25,122)( 26,101)( 27,105)
( 28,104)( 29,103)( 30,102)( 36, 39)( 37, 38)( 41, 67)( 42, 66)( 43, 70)
( 44, 69)( 45, 68)( 46, 96)( 47,100)( 48, 99)( 49, 98)( 50, 97)( 51, 76)
( 52, 80)( 53, 79)( 54, 78)( 55, 77)( 56,107)( 57,106)( 58,110)( 59,109)
( 60,108)( 72, 75)( 73, 74)( 81, 82)( 83, 85)( 86,114)( 87,113)( 88,112)
( 89,111)( 90,115)(116,117)(118,120);;
s1 := ( 2, 5)( 3, 4)( 6, 94)( 7, 93)( 8, 92)( 9, 91)( 10, 95)( 11, 31)
( 12, 35)( 13, 34)( 14, 33)( 15, 32)( 16,122)( 17,121)( 18,125)( 19,124)
( 20,123)( 21, 62)( 22, 61)( 23, 65)( 24, 64)( 25, 63)( 26, 71)( 27, 75)
( 28, 74)( 29, 73)( 30, 72)( 36, 80)( 37, 79)( 38, 78)( 39, 77)( 40, 76)
( 41, 43)( 44, 45)( 46,110)( 47,109)( 48,108)( 49,107)( 50,106)( 51,119)
( 52,118)( 53,117)( 54,116)( 55,120)( 57, 60)( 58, 59)( 66, 87)( 67, 86)
( 68, 90)( 69, 89)( 70, 88)( 81,104)( 82,103)( 83,102)( 84,101)( 85,105)
( 96,100)( 97, 99)(111,115)(112,114);;
s2 := ( 1, 71)( 2, 75)( 3, 74)( 4, 73)( 5, 72)( 6, 42)( 7, 41)( 8, 45)
( 9, 44)( 10, 43)( 11, 14)( 12, 13)( 16,107)( 17,106)( 18,110)( 19,109)
( 20,108)( 21, 76)( 22, 80)( 23, 79)( 24, 78)( 25, 77)( 26, 96)( 27,100)
( 28, 99)( 29, 98)( 30, 97)( 31, 67)( 32, 66)( 33, 70)( 34, 69)( 35, 68)
( 36, 39)( 37, 38)( 46,101)( 47,105)( 48,104)( 49,103)( 50,102)( 51,121)
( 52,125)( 53,124)( 54,123)( 55,122)( 56, 92)( 57, 91)( 58, 95)( 59, 94)
( 60, 93)( 61, 64)( 62, 63)( 81,117)( 82,116)( 83,120)( 84,119)( 85,118)
( 86, 89)( 87, 88)(111,114)(112,113);;
s3 := (126,127);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1, s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(127)!( 2, 5)( 3, 4)( 6, 32)( 7, 31)( 8, 35)( 9, 34)( 10, 33)
( 11, 64)( 12, 63)( 13, 62)( 14, 61)( 15, 65)( 16, 92)( 17, 91)( 18, 95)
( 19, 94)( 20, 93)( 21,121)( 22,125)( 23,124)( 24,123)( 25,122)( 26,101)
( 27,105)( 28,104)( 29,103)( 30,102)( 36, 39)( 37, 38)( 41, 67)( 42, 66)
( 43, 70)( 44, 69)( 45, 68)( 46, 96)( 47,100)( 48, 99)( 49, 98)( 50, 97)
( 51, 76)( 52, 80)( 53, 79)( 54, 78)( 55, 77)( 56,107)( 57,106)( 58,110)
( 59,109)( 60,108)( 72, 75)( 73, 74)( 81, 82)( 83, 85)( 86,114)( 87,113)
( 88,112)( 89,111)( 90,115)(116,117)(118,120);
s1 := Sym(127)!( 2, 5)( 3, 4)( 6, 94)( 7, 93)( 8, 92)( 9, 91)( 10, 95)
( 11, 31)( 12, 35)( 13, 34)( 14, 33)( 15, 32)( 16,122)( 17,121)( 18,125)
( 19,124)( 20,123)( 21, 62)( 22, 61)( 23, 65)( 24, 64)( 25, 63)( 26, 71)
( 27, 75)( 28, 74)( 29, 73)( 30, 72)( 36, 80)( 37, 79)( 38, 78)( 39, 77)
( 40, 76)( 41, 43)( 44, 45)( 46,110)( 47,109)( 48,108)( 49,107)( 50,106)
( 51,119)( 52,118)( 53,117)( 54,116)( 55,120)( 57, 60)( 58, 59)( 66, 87)
( 67, 86)( 68, 90)( 69, 89)( 70, 88)( 81,104)( 82,103)( 83,102)( 84,101)
( 85,105)( 96,100)( 97, 99)(111,115)(112,114);
s2 := Sym(127)!( 1, 71)( 2, 75)( 3, 74)( 4, 73)( 5, 72)( 6, 42)( 7, 41)
( 8, 45)( 9, 44)( 10, 43)( 11, 14)( 12, 13)( 16,107)( 17,106)( 18,110)
( 19,109)( 20,108)( 21, 76)( 22, 80)( 23, 79)( 24, 78)( 25, 77)( 26, 96)
( 27,100)( 28, 99)( 29, 98)( 30, 97)( 31, 67)( 32, 66)( 33, 70)( 34, 69)
( 35, 68)( 36, 39)( 37, 38)( 46,101)( 47,105)( 48,104)( 49,103)( 50,102)
( 51,121)( 52,125)( 53,124)( 54,123)( 55,122)( 56, 92)( 57, 91)( 58, 95)
( 59, 94)( 60, 93)( 61, 64)( 62, 63)( 81,117)( 82,116)( 83,120)( 84,119)
( 85,118)( 86, 89)( 87, 88)(111,114)(112,113);
s3 := Sym(127)!(126,127);
poly := sub<Sym(127)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1 >;
to this polytope