include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {5,10,2,2,5}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {5,10,2,2,5}*2000
if this polytope has a name.
Group : SmallGroup(2000,946)
Rank : 6
Schlafli Type : {5,10,2,2,5}
Number of vertices, edges, etc : 5, 25, 10, 2, 5, 5
Order of s0s1s2s3s4s5 : 10
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
5-fold quotients : {5,2,2,2,5}*400
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 6, 9)( 7,11)( 8,10)(12,13)(14,19)(15,18)(16,21)(17,20)
(22,25)(23,24);;
s1 := ( 1, 7)( 2, 4)( 3,14)( 5,16)( 6,10)( 8,12)( 9,18)(11,22)(13,17)(15,20)
(19,24)(21,23);;
s2 := ( 4, 5)( 7, 8)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25);;
s3 := (26,27);;
s4 := (29,30)(31,32);;
s5 := (28,29)(30,31);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(32)!( 2, 3)( 4, 5)( 6, 9)( 7,11)( 8,10)(12,13)(14,19)(15,18)(16,21)
(17,20)(22,25)(23,24);
s1 := Sym(32)!( 1, 7)( 2, 4)( 3,14)( 5,16)( 6,10)( 8,12)( 9,18)(11,22)(13,17)
(15,20)(19,24)(21,23);
s2 := Sym(32)!( 4, 5)( 7, 8)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)
(24,25);
s3 := Sym(32)!(26,27);
s4 := Sym(32)!(29,30)(31,32);
s5 := Sym(32)!(28,29)(30,31);
poly := sub<Sym(32)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 >;
to this polytope