include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,3,2,5,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,3,2,5,2}*240
if this polytope has a name.
Group : SmallGroup(240,202)
Rank : 6
Schlafli Type : {2,3,2,5,2}
Number of vertices, edges, etc : 2, 3, 3, 5, 5, 2
Order of s0s1s2s3s4s5 : 30
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,3,2,5,2,2} of size 480
{2,3,2,5,2,3} of size 720
{2,3,2,5,2,4} of size 960
{2,3,2,5,2,5} of size 1200
{2,3,2,5,2,6} of size 1440
{2,3,2,5,2,7} of size 1680
{2,3,2,5,2,8} of size 1920
Vertex Figure Of :
{2,2,3,2,5,2} of size 480
{3,2,3,2,5,2} of size 720
{4,2,3,2,5,2} of size 960
{5,2,3,2,5,2} of size 1200
{6,2,3,2,5,2} of size 1440
{7,2,3,2,5,2} of size 1680
{8,2,3,2,5,2} of size 1920
Quotients (Maximal Quotients in Boldface) :
No Regular Quotients.
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,3,2,10,2}*480, {2,6,2,5,2}*480
3-fold covers : {2,9,2,5,2}*720, {6,3,2,5,2}*720, {2,3,2,15,2}*720
4-fold covers : {2,12,2,5,2}*960, {2,3,2,20,2}*960, {2,3,2,10,4}*960, {4,6,2,5,2}*960a, {4,3,2,5,2}*960, {2,6,2,10,2}*960
5-fold covers : {2,3,2,25,2}*1200, {2,3,2,5,10}*1200, {2,15,2,5,2}*1200
6-fold covers : {2,9,2,10,2}*1440, {2,18,2,5,2}*1440, {2,3,2,10,6}*1440, {2,3,6,10,2}*1440, {6,3,2,10,2}*1440, {6,6,2,5,2}*1440a, {6,6,2,5,2}*1440b, {2,3,2,30,2}*1440, {2,6,2,15,2}*1440
7-fold covers : {2,21,2,5,2}*1680, {2,3,2,35,2}*1680
8-fold covers : {4,12,2,5,2}*1920a, {2,3,2,20,4}*1920, {2,3,2,10,8}*1920, {8,6,2,5,2}*1920, {2,24,2,5,2}*1920, {2,3,2,40,2}*1920, {2,6,2,10,4}*1920, {2,6,4,10,2}*1920, {4,6,2,10,2}*1920a, {2,12,2,10,2}*1920, {2,6,2,20,2}*1920, {8,3,2,5,2}*1920, {2,3,4,10,2}*1920, {4,3,2,10,2}*1920, {4,6,2,5,2}*1920
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (4,5);;
s2 := (3,4);;
s3 := ( 7, 8)( 9,10);;
s4 := (6,7)(8,9);;
s5 := (11,12);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5, s1*s2*s1*s2*s1*s2, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(12)!(1,2);
s1 := Sym(12)!(4,5);
s2 := Sym(12)!(3,4);
s3 := Sym(12)!( 7, 8)( 9,10);
s4 := Sym(12)!(6,7)(8,9);
s5 := Sym(12)!(11,12);
poly := sub<Sym(12)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s4*s5*s4*s5, s1*s2*s1*s2*s1*s2,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope