include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,21}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,21}*252
if this polytope has a name.
Group : SmallGroup(252,36)
Rank : 3
Schlafli Type : {6,21}
Number of vertices, edges, etc : 6, 63, 21
Order of s0s1s2 : 42
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{6,21,2} of size 504
{6,21,4} of size 1008
{6,21,6} of size 1512
Vertex Figure Of :
{2,6,21} of size 504
{3,6,21} of size 756
{4,6,21} of size 1008
{6,6,21} of size 1512
{6,6,21} of size 1512
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {2,21}*84
7-fold quotients : {6,3}*36
9-fold quotients : {2,7}*28
21-fold quotients : {2,3}*12
Covers (Minimal Covers in Boldface) :
2-fold covers : {6,42}*504c
3-fold covers : {6,63}*756, {6,21}*756
4-fold covers : {6,84}*1008c, {12,42}*1008c, {12,21}*1008, {6,21}*1008b
5-fold covers : {6,105}*1260
6-fold covers : {6,126}*1512b, {6,42}*1512b, {6,42}*1512d
7-fold covers : {6,147}*1764, {42,21}*1764
Permutation Representation (GAP) :
s0 := (22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49)(29,50)(30,51)(31,52)
(32,53)(33,54)(34,55)(35,56)(36,57)(37,58)(38,59)(39,60)(40,61)(41,62)
(42,63);;
s1 := ( 1,22)( 2,28)( 3,27)( 4,26)( 5,25)( 6,24)( 7,23)( 8,36)( 9,42)(10,41)
(11,40)(12,39)(13,38)(14,37)(15,29)(16,35)(17,34)(18,33)(19,32)(20,31)(21,30)
(44,49)(45,48)(46,47)(50,57)(51,63)(52,62)(53,61)(54,60)(55,59)(56,58);;
s2 := ( 1, 9)( 2, 8)( 3,14)( 4,13)( 5,12)( 6,11)( 7,10)(15,16)(17,21)(18,20)
(22,51)(23,50)(24,56)(25,55)(26,54)(27,53)(28,52)(29,44)(30,43)(31,49)(32,48)
(33,47)(34,46)(35,45)(36,58)(37,57)(38,63)(39,62)(40,61)(41,60)(42,59);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(63)!(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49)(29,50)(30,51)
(31,52)(32,53)(33,54)(34,55)(35,56)(36,57)(37,58)(38,59)(39,60)(40,61)(41,62)
(42,63);
s1 := Sym(63)!( 1,22)( 2,28)( 3,27)( 4,26)( 5,25)( 6,24)( 7,23)( 8,36)( 9,42)
(10,41)(11,40)(12,39)(13,38)(14,37)(15,29)(16,35)(17,34)(18,33)(19,32)(20,31)
(21,30)(44,49)(45,48)(46,47)(50,57)(51,63)(52,62)(53,61)(54,60)(55,59)(56,58);
s2 := Sym(63)!( 1, 9)( 2, 8)( 3,14)( 4,13)( 5,12)( 6,11)( 7,10)(15,16)(17,21)
(18,20)(22,51)(23,50)(24,56)(25,55)(26,54)(27,53)(28,52)(29,44)(30,43)(31,49)
(32,48)(33,47)(34,46)(35,45)(36,58)(37,57)(38,63)(39,62)(40,61)(41,60)(42,59);
poly := sub<Sym(63)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
References : None.
to this polytope