include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {21,2,3}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {21,2,3}*252
if this polytope has a name.
Group : SmallGroup(252,36)
Rank : 4
Schlafli Type : {21,2,3}
Number of vertices, edges, etc : 21, 21, 3, 3
Order of s0s1s2s3 : 21
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{21,2,3,2} of size 504
{21,2,3,3} of size 1008
{21,2,3,4} of size 1008
{21,2,3,6} of size 1512
Vertex Figure Of :
{2,21,2,3} of size 504
{4,21,2,3} of size 1008
{6,21,2,3} of size 1512
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {7,2,3}*84
7-fold quotients : {3,2,3}*36
Covers (Minimal Covers in Boldface) :
2-fold covers : {21,2,6}*504, {42,2,3}*504
3-fold covers : {63,2,3}*756, {21,2,9}*756, {21,6,3}*756
4-fold covers : {21,2,12}*1008, {84,2,3}*1008, {42,2,6}*1008
5-fold covers : {21,2,15}*1260, {105,2,3}*1260
6-fold covers : {63,2,6}*1512, {126,2,3}*1512, {21,2,18}*1512, {42,2,9}*1512, {21,6,6}*1512a, {42,6,3}*1512a, {21,6,6}*1512b, {42,6,3}*1512b
7-fold covers : {147,2,3}*1764, {21,2,21}*1764
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21);;
s1 := ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20);;
s2 := (23,24);;
s3 := (22,23);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(24)!( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15)(16,17)(18,19)
(20,21);
s1 := Sym(24)!( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)
(19,20);
s2 := Sym(24)!(23,24);
s3 := Sym(24)!(22,23);
poly := sub<Sym(24)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope