include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,4,8}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,4,8}*256b
if this polytope has a name.
Group : SmallGroup(256,16864)
Rank : 4
Schlafli Type : {4,4,8}
Number of vertices, edges, etc : 4, 8, 16, 8
Order of s0s1s2s3 : 8
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{4,4,8,2} of size 512
Vertex Figure Of :
{2,4,4,8} of size 512
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,4,4}*128, {2,4,8}*128b
4-fold quotients : {2,4,4}*64, {4,4,2}*64, {4,2,4}*64
8-fold quotients : {2,2,4}*32, {2,4,2}*32, {4,2,2}*32
16-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
2-fold covers : {8,4,8}*512a, {4,8,8}*512b, {4,4,8}*512a, {4,8,8}*512d, {4,8,8}*512f, {4,8,8}*512h, {4,4,8}*512c, {8,4,8}*512c
3-fold covers : {12,4,8}*768b, {4,12,8}*768b, {4,4,24}*768b
5-fold covers : {20,4,8}*1280b, {4,20,8}*1280b, {4,4,40}*1280b
7-fold covers : {28,4,8}*1792b, {4,28,8}*1792b, {4,4,56}*1792b
Permutation Representation (GAP) :
s0 := ( 1, 81)( 2, 82)( 3, 83)( 4, 84)( 5, 85)( 6, 86)( 7, 87)( 8, 88)
( 9, 89)( 10, 90)( 11, 91)( 12, 92)( 13, 93)( 14, 94)( 15, 95)( 16, 96)
( 17, 65)( 18, 66)( 19, 67)( 20, 68)( 21, 69)( 22, 70)( 23, 71)( 24, 72)
( 25, 73)( 26, 74)( 27, 75)( 28, 76)( 29, 77)( 30, 78)( 31, 79)( 32, 80)
( 33,115)( 34,116)( 35,113)( 36,114)( 37,119)( 38,120)( 39,117)( 40,118)
( 41,123)( 42,124)( 43,121)( 44,122)( 45,127)( 46,128)( 47,125)( 48,126)
( 49, 99)( 50,100)( 51, 97)( 52, 98)( 53,103)( 54,104)( 55,101)( 56,102)
( 57,107)( 58,108)( 59,105)( 60,106)( 61,111)( 62,112)( 63,109)( 64,110);;
s1 := ( 1, 49)( 2, 50)( 3, 51)( 4, 52)( 5, 54)( 6, 53)( 7, 56)( 8, 55)
( 9, 58)( 10, 57)( 11, 60)( 12, 59)( 13, 61)( 14, 62)( 15, 63)( 16, 64)
( 17, 33)( 18, 34)( 19, 35)( 20, 36)( 21, 38)( 22, 37)( 23, 40)( 24, 39)
( 25, 42)( 26, 41)( 27, 44)( 28, 43)( 29, 45)( 30, 46)( 31, 47)( 32, 48)
( 65,113)( 66,114)( 67,115)( 68,116)( 69,118)( 70,117)( 71,120)( 72,119)
( 73,122)( 74,121)( 75,124)( 76,123)( 77,125)( 78,126)( 79,127)( 80,128)
( 81, 97)( 82, 98)( 83, 99)( 84,100)( 85,102)( 86,101)( 87,104)( 88,103)
( 89,106)( 90,105)( 91,108)( 92,107)( 93,109)( 94,110)( 95,111)( 96,112);;
s2 := ( 5, 6)( 7, 8)( 9, 10)( 11, 12)( 17, 25)( 18, 26)( 19, 27)( 20, 28)
( 21, 30)( 22, 29)( 23, 32)( 24, 31)( 33, 37)( 34, 38)( 35, 39)( 36, 40)
( 41, 46)( 42, 45)( 43, 48)( 44, 47)( 49, 61)( 50, 62)( 51, 63)( 52, 64)
( 53, 57)( 54, 58)( 55, 59)( 56, 60)( 65, 73)( 66, 74)( 67, 75)( 68, 76)
( 69, 78)( 70, 77)( 71, 80)( 72, 79)( 85, 86)( 87, 88)( 89, 90)( 91, 92)
( 97,109)( 98,110)( 99,111)(100,112)(101,105)(102,106)(103,107)(104,108)
(113,117)(114,118)(115,119)(116,120)(121,126)(122,125)(123,128)(124,127);;
s3 := ( 1, 17)( 2, 18)( 3, 19)( 4, 20)( 5, 21)( 6, 22)( 7, 23)( 8, 24)
( 9, 26)( 10, 25)( 11, 28)( 12, 27)( 13, 30)( 14, 29)( 15, 32)( 16, 31)
( 33, 49)( 34, 50)( 35, 51)( 36, 52)( 37, 53)( 38, 54)( 39, 55)( 40, 56)
( 41, 58)( 42, 57)( 43, 60)( 44, 59)( 45, 62)( 46, 61)( 47, 64)( 48, 63)
( 65, 81)( 66, 82)( 67, 83)( 68, 84)( 69, 85)( 70, 86)( 71, 87)( 72, 88)
( 73, 90)( 74, 89)( 75, 92)( 76, 91)( 77, 94)( 78, 93)( 79, 96)( 80, 95)
( 97,113)( 98,114)( 99,115)(100,116)(101,117)(102,118)(103,119)(104,120)
(105,122)(106,121)(107,124)(108,123)(109,126)(110,125)(111,128)(112,127);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2,
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(128)!( 1, 81)( 2, 82)( 3, 83)( 4, 84)( 5, 85)( 6, 86)( 7, 87)
( 8, 88)( 9, 89)( 10, 90)( 11, 91)( 12, 92)( 13, 93)( 14, 94)( 15, 95)
( 16, 96)( 17, 65)( 18, 66)( 19, 67)( 20, 68)( 21, 69)( 22, 70)( 23, 71)
( 24, 72)( 25, 73)( 26, 74)( 27, 75)( 28, 76)( 29, 77)( 30, 78)( 31, 79)
( 32, 80)( 33,115)( 34,116)( 35,113)( 36,114)( 37,119)( 38,120)( 39,117)
( 40,118)( 41,123)( 42,124)( 43,121)( 44,122)( 45,127)( 46,128)( 47,125)
( 48,126)( 49, 99)( 50,100)( 51, 97)( 52, 98)( 53,103)( 54,104)( 55,101)
( 56,102)( 57,107)( 58,108)( 59,105)( 60,106)( 61,111)( 62,112)( 63,109)
( 64,110);
s1 := Sym(128)!( 1, 49)( 2, 50)( 3, 51)( 4, 52)( 5, 54)( 6, 53)( 7, 56)
( 8, 55)( 9, 58)( 10, 57)( 11, 60)( 12, 59)( 13, 61)( 14, 62)( 15, 63)
( 16, 64)( 17, 33)( 18, 34)( 19, 35)( 20, 36)( 21, 38)( 22, 37)( 23, 40)
( 24, 39)( 25, 42)( 26, 41)( 27, 44)( 28, 43)( 29, 45)( 30, 46)( 31, 47)
( 32, 48)( 65,113)( 66,114)( 67,115)( 68,116)( 69,118)( 70,117)( 71,120)
( 72,119)( 73,122)( 74,121)( 75,124)( 76,123)( 77,125)( 78,126)( 79,127)
( 80,128)( 81, 97)( 82, 98)( 83, 99)( 84,100)( 85,102)( 86,101)( 87,104)
( 88,103)( 89,106)( 90,105)( 91,108)( 92,107)( 93,109)( 94,110)( 95,111)
( 96,112);
s2 := Sym(128)!( 5, 6)( 7, 8)( 9, 10)( 11, 12)( 17, 25)( 18, 26)( 19, 27)
( 20, 28)( 21, 30)( 22, 29)( 23, 32)( 24, 31)( 33, 37)( 34, 38)( 35, 39)
( 36, 40)( 41, 46)( 42, 45)( 43, 48)( 44, 47)( 49, 61)( 50, 62)( 51, 63)
( 52, 64)( 53, 57)( 54, 58)( 55, 59)( 56, 60)( 65, 73)( 66, 74)( 67, 75)
( 68, 76)( 69, 78)( 70, 77)( 71, 80)( 72, 79)( 85, 86)( 87, 88)( 89, 90)
( 91, 92)( 97,109)( 98,110)( 99,111)(100,112)(101,105)(102,106)(103,107)
(104,108)(113,117)(114,118)(115,119)(116,120)(121,126)(122,125)(123,128)
(124,127);
s3 := Sym(128)!( 1, 17)( 2, 18)( 3, 19)( 4, 20)( 5, 21)( 6, 22)( 7, 23)
( 8, 24)( 9, 26)( 10, 25)( 11, 28)( 12, 27)( 13, 30)( 14, 29)( 15, 32)
( 16, 31)( 33, 49)( 34, 50)( 35, 51)( 36, 52)( 37, 53)( 38, 54)( 39, 55)
( 40, 56)( 41, 58)( 42, 57)( 43, 60)( 44, 59)( 45, 62)( 46, 61)( 47, 64)
( 48, 63)( 65, 81)( 66, 82)( 67, 83)( 68, 84)( 69, 85)( 70, 86)( 71, 87)
( 72, 88)( 73, 90)( 74, 89)( 75, 92)( 76, 91)( 77, 94)( 78, 93)( 79, 96)
( 80, 95)( 97,113)( 98,114)( 99,115)(100,116)(101,117)(102,118)(103,119)
(104,120)(105,122)(106,121)(107,124)(108,123)(109,126)(110,125)(111,128)
(112,127);
poly := sub<Sym(128)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2, s3*s1*s2*s3*s2*s3*s1*s2*s3*s2 >;
References : None.
to this polytope