include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {3,4,2,3}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,4,2,3}*288
if this polytope has a name.
Group : SmallGroup(288,1028)
Rank : 5
Schlafli Type : {3,4,2,3}
Number of vertices, edges, etc : 6, 12, 8, 3, 3
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{3,4,2,3,2} of size 576
{3,4,2,3,3} of size 1152
{3,4,2,3,4} of size 1152
{3,4,2,3,6} of size 1728
Vertex Figure Of :
{2,3,4,2,3} of size 576
{3,3,4,2,3} of size 1152
{4,3,4,2,3} of size 1152
{6,3,4,2,3} of size 1728
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,4,2,3}*144
4-fold quotients : {3,2,2,3}*72
Covers (Minimal Covers in Boldface) :
2-fold covers : {3,8,2,3}*576, {3,4,2,6}*576, {6,4,2,3}*576
3-fold covers : {3,4,2,9}*864, {9,4,2,3}*864, {3,4,6,3}*864, {3,12,2,3}*864
4-fold covers : {3,8,2,3}*1152, {12,4,2,3}*1152b, {3,4,2,12}*1152, {3,4,4,6}*1152b, {6,4,2,3}*1152b, {12,4,2,3}*1152c, {3,8,2,6}*1152, {6,8,2,3}*1152b, {6,8,2,3}*1152c, {3,4,4,3}*1152, {6,4,2,6}*1152
5-fold covers : {15,4,2,3}*1440, {3,4,2,15}*1440
6-fold covers : {3,8,2,9}*1728, {9,8,2,3}*1728, {3,4,2,18}*1728, {6,4,2,9}*1728, {9,4,2,6}*1728, {18,4,2,3}*1728, {3,24,2,3}*1728, {3,8,6,3}*1728, {3,4,6,6}*1728a, {3,4,6,6}*1728b, {6,4,6,3}*1728b, {3,12,2,6}*1728, {6,12,2,3}*1728a, {6,12,2,3}*1728b
Permutation Representation (GAP) :
s0 := (1,4)(2,6);;
s1 := (3,4)(5,6);;
s2 := (3,5);;
s3 := (8,9);;
s4 := (7,8);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s1*s0*s1*s0*s1, s3*s4*s3*s4*s3*s4,
s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(9)!(1,4)(2,6);
s1 := Sym(9)!(3,4)(5,6);
s2 := Sym(9)!(3,5);
s3 := Sym(9)!(8,9);
s4 := Sym(9)!(7,8);
poly := sub<Sym(9)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1,
s3*s4*s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope