Polytope of Type {15,2,5}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {15,2,5}*300
if this polytope has a name.
Group : SmallGroup(300,39)
Rank : 4
Schlafli Type : {15,2,5}
Number of vertices, edges, etc : 15, 15, 5, 5
Order of s0s1s2s3 : 15
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {15,2,5,2} of size 600
   {15,2,5,3} of size 1800
   {15,2,5,5} of size 1800
Vertex Figure Of :
   {2,15,2,5} of size 600
   {4,15,2,5} of size 1200
   {6,15,2,5} of size 1800
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {5,2,5}*100
   5-fold quotients : {3,2,5}*60
Covers (Minimal Covers in Boldface) :
   2-fold covers : {15,2,10}*600, {30,2,5}*600
   3-fold covers : {45,2,5}*900, {15,2,15}*900
   4-fold covers : {15,2,20}*1200, {60,2,5}*1200, {30,2,10}*1200
   5-fold covers : {75,2,5}*1500, {15,2,25}*1500, {15,10,5}*1500
   6-fold covers : {45,2,10}*1800, {90,2,5}*1800, {15,6,10}*1800, {15,2,30}*1800, {30,2,15}*1800
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15);;
s1 := ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14);;
s2 := (17,18)(19,20);;
s3 := (16,17)(18,19);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(20)!( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15);
s1 := Sym(20)!( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14);
s2 := Sym(20)!(17,18)(19,20);
s3 := Sym(20)!(16,17)(18,19);
poly := sub<Sym(20)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope