Polytope of Type {2,13,2,3}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,13,2,3}*312
if this polytope has a name.
Group : SmallGroup(312,54)
Rank : 5
Schlafli Type : {2,13,2,3}
Number of vertices, edges, etc : 2, 13, 13, 3, 3
Order of s0s1s2s3s4 : 78
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,13,2,3,2} of size 624
   {2,13,2,3,3} of size 1248
   {2,13,2,3,4} of size 1248
   {2,13,2,3,6} of size 1872
Vertex Figure Of :
   {2,2,13,2,3} of size 624
   {3,2,13,2,3} of size 936
   {4,2,13,2,3} of size 1248
   {5,2,13,2,3} of size 1560
   {6,2,13,2,3} of size 1872
Quotients (Maximal Quotients in Boldface) :
   No Regular Quotients.
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,13,2,6}*624, {2,26,2,3}*624
   3-fold covers : {2,13,2,9}*936, {2,39,2,3}*936
   4-fold covers : {2,13,2,12}*1248, {2,52,2,3}*1248, {4,26,2,3}*1248, {2,26,2,6}*1248
   5-fold covers : {2,13,2,15}*1560, {2,65,2,3}*1560
   6-fold covers : {2,13,2,18}*1872, {2,26,2,9}*1872, {2,26,6,3}*1872, {6,26,2,3}*1872, {2,39,2,6}*1872, {2,78,2,3}*1872
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15);;
s2 := ( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14);;
s3 := (17,18);;
s4 := (16,17);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(18)!(1,2);
s1 := Sym(18)!( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15);
s2 := Sym(18)!( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14);
s3 := Sym(18)!(17,18);
s4 := Sym(18)!(16,17);
poly := sub<Sym(18)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope