Polytope of Type {21,2,2,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {21,2,2,2}*336
if this polytope has a name.
Group : SmallGroup(336,227)
Rank : 5
Schlafli Type : {21,2,2,2}
Number of vertices, edges, etc : 21, 21, 2, 2, 2
Order of s0s1s2s3s4 : 42
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {21,2,2,2,2} of size 672
   {21,2,2,2,3} of size 1008
   {21,2,2,2,4} of size 1344
   {21,2,2,2,5} of size 1680
Vertex Figure Of :
   {2,21,2,2,2} of size 672
   {4,21,2,2,2} of size 1344
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {7,2,2,2}*112
   7-fold quotients : {3,2,2,2}*48
Covers (Minimal Covers in Boldface) :
   2-fold covers : {21,2,2,4}*672, {21,2,4,2}*672, {42,2,2,2}*672
   3-fold covers : {63,2,2,2}*1008, {21,2,2,6}*1008, {21,2,6,2}*1008, {21,6,2,2}*1008
   4-fold covers : {21,2,4,4}*1344, {21,2,2,8}*1344, {21,2,8,2}*1344, {84,2,2,2}*1344, {42,2,2,4}*1344, {42,2,4,2}*1344, {42,4,2,2}*1344a, {21,4,2,2}*1344
   5-fold covers : {21,2,2,10}*1680, {21,2,10,2}*1680, {105,2,2,2}*1680
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21);;
s1 := ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20);;
s2 := (22,23);;
s3 := (24,25);;
s4 := (26,27);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(27)!( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15)(16,17)(18,19)
(20,21);
s1 := Sym(27)!( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)
(19,20);
s2 := Sym(27)!(22,23);
s3 := Sym(27)!(24,25);
s4 := Sym(27)!(26,27);
poly := sub<Sym(27)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope