include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {8,22}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,22}*352
Also Known As : {8,22|2}. if this polytope has another name.
Group : SmallGroup(352,105)
Rank : 3
Schlafli Type : {8,22}
Number of vertices, edges, etc : 8, 88, 22
Order of s0s1s2 : 88
Order of s0s1s2s1 : 2
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{8,22,2} of size 704
{8,22,4} of size 1408
Vertex Figure Of :
{2,8,22} of size 704
{4,8,22} of size 1408
{4,8,22} of size 1408
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,22}*176
4-fold quotients : {2,22}*88
8-fold quotients : {2,11}*44
11-fold quotients : {8,2}*32
22-fold quotients : {4,2}*16
44-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
2-fold covers : {8,44}*704a, {16,22}*704
3-fold covers : {24,22}*1056, {8,66}*1056
4-fold covers : {8,44}*1408a, {8,88}*1408a, {8,88}*1408c, {16,44}*1408a, {16,44}*1408b, {32,22}*1408
5-fold covers : {40,22}*1760, {8,110}*1760
Permutation Representation (GAP) :
s0 := (23,34)(24,35)(25,36)(26,37)(27,38)(28,39)(29,40)(30,41)(31,42)(32,43)
(33,44)(45,67)(46,68)(47,69)(48,70)(49,71)(50,72)(51,73)(52,74)(53,75)(54,76)
(55,77)(56,78)(57,79)(58,80)(59,81)(60,82)(61,83)(62,84)(63,85)(64,86)(65,87)
(66,88);;
s1 := ( 1,45)( 2,55)( 3,54)( 4,53)( 5,52)( 6,51)( 7,50)( 8,49)( 9,48)(10,47)
(11,46)(12,56)(13,66)(14,65)(15,64)(16,63)(17,62)(18,61)(19,60)(20,59)(21,58)
(22,57)(23,78)(24,88)(25,87)(26,86)(27,85)(28,84)(29,83)(30,82)(31,81)(32,80)
(33,79)(34,67)(35,77)(36,76)(37,75)(38,74)(39,73)(40,72)(41,71)(42,70)(43,69)
(44,68);;
s2 := ( 1, 2)( 3,11)( 4,10)( 5, 9)( 6, 8)(12,13)(14,22)(15,21)(16,20)(17,19)
(23,24)(25,33)(26,32)(27,31)(28,30)(34,35)(36,44)(37,43)(38,42)(39,41)(45,46)
(47,55)(48,54)(49,53)(50,52)(56,57)(58,66)(59,65)(60,64)(61,63)(67,68)(69,77)
(70,76)(71,75)(72,74)(78,79)(80,88)(81,87)(82,86)(83,85);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(88)!(23,34)(24,35)(25,36)(26,37)(27,38)(28,39)(29,40)(30,41)(31,42)
(32,43)(33,44)(45,67)(46,68)(47,69)(48,70)(49,71)(50,72)(51,73)(52,74)(53,75)
(54,76)(55,77)(56,78)(57,79)(58,80)(59,81)(60,82)(61,83)(62,84)(63,85)(64,86)
(65,87)(66,88);
s1 := Sym(88)!( 1,45)( 2,55)( 3,54)( 4,53)( 5,52)( 6,51)( 7,50)( 8,49)( 9,48)
(10,47)(11,46)(12,56)(13,66)(14,65)(15,64)(16,63)(17,62)(18,61)(19,60)(20,59)
(21,58)(22,57)(23,78)(24,88)(25,87)(26,86)(27,85)(28,84)(29,83)(30,82)(31,81)
(32,80)(33,79)(34,67)(35,77)(36,76)(37,75)(38,74)(39,73)(40,72)(41,71)(42,70)
(43,69)(44,68);
s2 := Sym(88)!( 1, 2)( 3,11)( 4,10)( 5, 9)( 6, 8)(12,13)(14,22)(15,21)(16,20)
(17,19)(23,24)(25,33)(26,32)(27,31)(28,30)(34,35)(36,44)(37,43)(38,42)(39,41)
(45,46)(47,55)(48,54)(49,53)(50,52)(56,57)(58,66)(59,65)(60,64)(61,63)(67,68)
(69,77)(70,76)(71,75)(72,74)(78,79)(80,88)(81,87)(82,86)(83,85);
poly := sub<Sym(88)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
References : None.
to this polytope