include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,2,2,11}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,2,2,11}*352
if this polytope has a name.
Group : SmallGroup(352,177)
Rank : 5
Schlafli Type : {4,2,2,11}
Number of vertices, edges, etc : 4, 4, 2, 11, 11
Order of s0s1s2s3s4 : 44
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{4,2,2,11,2} of size 704
Vertex Figure Of :
{2,4,2,2,11} of size 704
{3,4,2,2,11} of size 1056
{4,4,2,2,11} of size 1408
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,2,11}*176
Covers (Minimal Covers in Boldface) :
2-fold covers : {4,4,2,11}*704, {8,2,2,11}*704, {4,2,2,22}*704
3-fold covers : {12,2,2,11}*1056, {4,6,2,11}*1056a, {4,2,2,33}*1056
4-fold covers : {4,8,2,11}*1408a, {8,4,2,11}*1408a, {4,8,2,11}*1408b, {8,4,2,11}*1408b, {4,4,2,11}*1408, {16,2,2,11}*1408, {4,4,2,22}*1408, {4,2,4,22}*1408, {4,2,2,44}*1408, {8,2,2,22}*1408
5-fold covers : {20,2,2,11}*1760, {4,10,2,11}*1760, {4,2,2,55}*1760
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2)(3,4);;
s2 := (5,6);;
s3 := ( 8, 9)(10,11)(12,13)(14,15)(16,17);;
s4 := ( 7, 8)( 9,10)(11,12)(13,14)(15,16);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s1*s0*s1*s0*s1*s0*s1,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(17)!(2,3);
s1 := Sym(17)!(1,2)(3,4);
s2 := Sym(17)!(5,6);
s3 := Sym(17)!( 8, 9)(10,11)(12,13)(14,15)(16,17);
s4 := Sym(17)!( 7, 8)( 9,10)(11,12)(13,14)(15,16);
poly := sub<Sym(17)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s1*s0*s1*s0*s1*s0*s1, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope