Polytope of Type {3,6,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,6,10}*360
if this polytope has a name.
Group : SmallGroup(360,137)
Rank : 4
Schlafli Type : {3,6,10}
Number of vertices, edges, etc : 3, 9, 30, 10
Order of s0s1s2s3 : 30
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {3,6,10,2} of size 720
   {3,6,10,4} of size 1440
   {3,6,10,5} of size 1800
Vertex Figure Of :
   {2,3,6,10} of size 720
   {4,3,6,10} of size 1440
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {3,2,10}*120
   5-fold quotients : {3,6,2}*72
   6-fold quotients : {3,2,5}*60
   15-fold quotients : {3,2,2}*24
Covers (Minimal Covers in Boldface) :
   2-fold covers : {3,6,20}*720, {6,6,10}*720c
   3-fold covers : {9,6,10}*1080, {3,6,10}*1080, {3,6,30}*1080b
   4-fold covers : {3,6,40}*1440, {12,6,10}*1440b, {6,6,20}*1440c, {6,12,10}*1440c, {3,6,10}*1440, {3,12,10}*1440
   5-fold covers : {3,6,50}*1800, {15,6,10}*1800
Permutation Representation (GAP) :
s0 := ( 6,11)( 7,12)( 8,13)( 9,14)(10,15)(16,31)(17,32)(18,33)(19,34)(20,35)
(21,41)(22,42)(23,43)(24,44)(25,45)(26,36)(27,37)(28,38)(29,39)(30,40);;
s1 := ( 1,21)( 2,22)( 3,23)( 4,24)( 5,25)( 6,16)( 7,17)( 8,18)( 9,19)(10,20)
(11,26)(12,27)(13,28)(14,29)(15,30)(31,36)(32,37)(33,38)(34,39)(35,40);;
s2 := ( 2, 5)( 3, 4)( 6,11)( 7,15)( 8,14)( 9,13)(10,12)(17,20)(18,19)(21,26)
(22,30)(23,29)(24,28)(25,27)(32,35)(33,34)(36,41)(37,45)(38,44)(39,43)
(40,42);;
s3 := ( 1, 2)( 3, 5)( 6, 7)( 8,10)(11,12)(13,15)(16,17)(18,20)(21,22)(23,25)
(26,27)(28,30)(31,32)(33,35)(36,37)(38,40)(41,42)(43,45);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(45)!( 6,11)( 7,12)( 8,13)( 9,14)(10,15)(16,31)(17,32)(18,33)(19,34)
(20,35)(21,41)(22,42)(23,43)(24,44)(25,45)(26,36)(27,37)(28,38)(29,39)(30,40);
s1 := Sym(45)!( 1,21)( 2,22)( 3,23)( 4,24)( 5,25)( 6,16)( 7,17)( 8,18)( 9,19)
(10,20)(11,26)(12,27)(13,28)(14,29)(15,30)(31,36)(32,37)(33,38)(34,39)(35,40);
s2 := Sym(45)!( 2, 5)( 3, 4)( 6,11)( 7,15)( 8,14)( 9,13)(10,12)(17,20)(18,19)
(21,26)(22,30)(23,29)(24,28)(25,27)(32,35)(33,34)(36,41)(37,45)(38,44)(39,43)
(40,42);
s3 := Sym(45)!( 1, 2)( 3, 5)( 6, 7)( 8,10)(11,12)(13,15)(16,17)(18,20)(21,22)
(23,25)(26,27)(28,30)(31,32)(33,35)(36,37)(38,40)(41,42)(43,45);
poly := sub<Sym(45)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 
References : None.
to this polytope