Polytope of Type {5,2,6,3}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {5,2,6,3}*360
if this polytope has a name.
Group : SmallGroup(360,137)
Rank : 5
Schlafli Type : {5,2,6,3}
Number of vertices, edges, etc : 5, 5, 6, 9, 3
Order of s0s1s2s3s4 : 30
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {5,2,6,3,2} of size 720
   {5,2,6,3,4} of size 1440
Vertex Figure Of :
   {2,5,2,6,3} of size 720
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {5,2,2,3}*120
Covers (Minimal Covers in Boldface) :
   2-fold covers : {5,2,6,6}*720b, {10,2,6,3}*720
   3-fold covers : {5,2,6,9}*1080, {5,2,6,3}*1080, {15,2,6,3}*1080
   4-fold covers : {5,2,6,12}*1440b, {20,2,6,3}*1440, {10,4,6,3}*1440, {5,2,12,6}*1440c, {5,2,6,3}*1440, {5,2,12,3}*1440, {10,2,6,6}*1440b
   5-fold covers : {25,2,6,3}*1800, {5,2,6,15}*1800, {5,10,6,3}*1800
Permutation Representation (GAP) :
s0 := (2,3)(4,5);;
s1 := (1,2)(3,4);;
s2 := ( 9,10)(11,12)(13,14);;
s3 := ( 6, 9)( 7,13)( 8,11)(12,14);;
s4 := ( 6, 7)( 9,12)(10,11)(13,14);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4*s3*s4, s4*s2*s3*s2*s3*s4*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(14)!(2,3)(4,5);
s1 := Sym(14)!(1,2)(3,4);
s2 := Sym(14)!( 9,10)(11,12)(13,14);
s3 := Sym(14)!( 6, 9)( 7,13)( 8,11)(12,14);
s4 := Sym(14)!( 6, 7)( 9,12)(10,11)(13,14);
poly := sub<Sym(14)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4*s3*s4, 
s4*s2*s3*s2*s3*s4*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope