Polytope of Type {8,4,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,4,6}*384b
if this polytope has a name.
Group : SmallGroup(384,12852)
Rank : 4
Schlafli Type : {8,4,6}
Number of vertices, edges, etc : 8, 16, 12, 6
Order of s0s1s2s3 : 24
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {8,4,6,2} of size 768
   {8,4,6,3} of size 1152
Vertex Figure Of :
   {2,8,4,6} of size 768
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,4,6}*192
   3-fold quotients : {8,4,2}*128b
   4-fold quotients : {2,4,6}*96a, {4,2,6}*96
   6-fold quotients : {4,4,2}*64
   8-fold quotients : {4,2,3}*48, {2,2,6}*48
   12-fold quotients : {2,4,2}*32, {4,2,2}*32
   16-fold quotients : {2,2,3}*24
   24-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   2-fold covers : {8,4,6}*768a, {8,8,6}*768a, {8,8,6}*768d, {8,4,12}*768b
   3-fold covers : {8,4,18}*1152b, {8,12,6}*1152e, {8,12,6}*1152f, {24,4,6}*1152b
   5-fold covers : {8,4,30}*1920b, {8,20,6}*1920b, {40,4,6}*1920b
Permutation Representation (GAP) :
s0 := (  1, 97)(  2, 98)(  3, 99)(  4,100)(  5,101)(  6,102)(  7,106)(  8,107)
(  9,108)( 10,103)( 11,104)( 12,105)( 13,112)( 14,113)( 15,114)( 16,109)
( 17,110)( 18,111)( 19,115)( 20,116)( 21,117)( 22,118)( 23,119)( 24,120)
( 25,121)( 26,122)( 27,123)( 28,124)( 29,125)( 30,126)( 31,130)( 32,131)
( 33,132)( 34,127)( 35,128)( 36,129)( 37,136)( 38,137)( 39,138)( 40,133)
( 41,134)( 42,135)( 43,139)( 44,140)( 45,141)( 46,142)( 47,143)( 48,144)
( 49,145)( 50,146)( 51,147)( 52,148)( 53,149)( 54,150)( 55,154)( 56,155)
( 57,156)( 58,151)( 59,152)( 60,153)( 61,160)( 62,161)( 63,162)( 64,157)
( 65,158)( 66,159)( 67,163)( 68,164)( 69,165)( 70,166)( 71,167)( 72,168)
( 73,169)( 74,170)( 75,171)( 76,172)( 77,173)( 78,174)( 79,178)( 80,179)
( 81,180)( 82,175)( 83,176)( 84,177)( 85,184)( 86,185)( 87,186)( 88,181)
( 89,182)( 90,183)( 91,187)( 92,188)( 93,189)( 94,190)( 95,191)( 96,192);;
s1 := ( 13, 16)( 14, 17)( 15, 18)( 19, 22)( 20, 23)( 21, 24)( 37, 40)( 38, 41)
( 39, 42)( 43, 46)( 44, 47)( 45, 48)( 49, 55)( 50, 56)( 51, 57)( 52, 58)
( 53, 59)( 54, 60)( 61, 70)( 62, 71)( 63, 72)( 64, 67)( 65, 68)( 66, 69)
( 73, 79)( 74, 80)( 75, 81)( 76, 82)( 77, 83)( 78, 84)( 85, 94)( 86, 95)
( 87, 96)( 88, 91)( 89, 92)( 90, 93)( 97,109)( 98,110)( 99,111)(100,112)
(101,113)(102,114)(103,115)(104,116)(105,117)(106,118)(107,119)(108,120)
(121,133)(122,134)(123,135)(124,136)(125,137)(126,138)(127,139)(128,140)
(129,141)(130,142)(131,143)(132,144)(145,166)(146,167)(147,168)(148,163)
(149,164)(150,165)(151,160)(152,161)(153,162)(154,157)(155,158)(156,159)
(169,190)(170,191)(171,192)(172,187)(173,188)(174,189)(175,184)(176,185)
(177,186)(178,181)(179,182)(180,183);;
s2 := (  1, 73)(  2, 75)(  3, 74)(  4, 76)(  5, 78)(  6, 77)(  7, 79)(  8, 81)
(  9, 80)( 10, 82)( 11, 84)( 12, 83)( 13, 88)( 14, 90)( 15, 89)( 16, 85)
( 17, 87)( 18, 86)( 19, 94)( 20, 96)( 21, 95)( 22, 91)( 23, 93)( 24, 92)
( 25, 49)( 26, 51)( 27, 50)( 28, 52)( 29, 54)( 30, 53)( 31, 55)( 32, 57)
( 33, 56)( 34, 58)( 35, 60)( 36, 59)( 37, 64)( 38, 66)( 39, 65)( 40, 61)
( 41, 63)( 42, 62)( 43, 70)( 44, 72)( 45, 71)( 46, 67)( 47, 69)( 48, 68)
( 97,169)( 98,171)( 99,170)(100,172)(101,174)(102,173)(103,175)(104,177)
(105,176)(106,178)(107,180)(108,179)(109,184)(110,186)(111,185)(112,181)
(113,183)(114,182)(115,190)(116,192)(117,191)(118,187)(119,189)(120,188)
(121,145)(122,147)(123,146)(124,148)(125,150)(126,149)(127,151)(128,153)
(129,152)(130,154)(131,156)(132,155)(133,160)(134,162)(135,161)(136,157)
(137,159)(138,158)(139,166)(140,168)(141,167)(142,163)(143,165)(144,164);;
s3 := (  1, 26)(  2, 25)(  3, 27)(  4, 29)(  5, 28)(  6, 30)(  7, 32)(  8, 31)
(  9, 33)( 10, 35)( 11, 34)( 12, 36)( 13, 38)( 14, 37)( 15, 39)( 16, 41)
( 17, 40)( 18, 42)( 19, 44)( 20, 43)( 21, 45)( 22, 47)( 23, 46)( 24, 48)
( 49, 74)( 50, 73)( 51, 75)( 52, 77)( 53, 76)( 54, 78)( 55, 80)( 56, 79)
( 57, 81)( 58, 83)( 59, 82)( 60, 84)( 61, 86)( 62, 85)( 63, 87)( 64, 89)
( 65, 88)( 66, 90)( 67, 92)( 68, 91)( 69, 93)( 70, 95)( 71, 94)( 72, 96)
( 97,122)( 98,121)( 99,123)(100,125)(101,124)(102,126)(103,128)(104,127)
(105,129)(106,131)(107,130)(108,132)(109,134)(110,133)(111,135)(112,137)
(113,136)(114,138)(115,140)(116,139)(117,141)(118,143)(119,142)(120,144)
(145,170)(146,169)(147,171)(148,173)(149,172)(150,174)(151,176)(152,175)
(153,177)(154,179)(155,178)(156,180)(157,182)(158,181)(159,183)(160,185)
(161,184)(162,186)(163,188)(164,187)(165,189)(166,191)(167,190)(168,192);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(192)!(  1, 97)(  2, 98)(  3, 99)(  4,100)(  5,101)(  6,102)(  7,106)
(  8,107)(  9,108)( 10,103)( 11,104)( 12,105)( 13,112)( 14,113)( 15,114)
( 16,109)( 17,110)( 18,111)( 19,115)( 20,116)( 21,117)( 22,118)( 23,119)
( 24,120)( 25,121)( 26,122)( 27,123)( 28,124)( 29,125)( 30,126)( 31,130)
( 32,131)( 33,132)( 34,127)( 35,128)( 36,129)( 37,136)( 38,137)( 39,138)
( 40,133)( 41,134)( 42,135)( 43,139)( 44,140)( 45,141)( 46,142)( 47,143)
( 48,144)( 49,145)( 50,146)( 51,147)( 52,148)( 53,149)( 54,150)( 55,154)
( 56,155)( 57,156)( 58,151)( 59,152)( 60,153)( 61,160)( 62,161)( 63,162)
( 64,157)( 65,158)( 66,159)( 67,163)( 68,164)( 69,165)( 70,166)( 71,167)
( 72,168)( 73,169)( 74,170)( 75,171)( 76,172)( 77,173)( 78,174)( 79,178)
( 80,179)( 81,180)( 82,175)( 83,176)( 84,177)( 85,184)( 86,185)( 87,186)
( 88,181)( 89,182)( 90,183)( 91,187)( 92,188)( 93,189)( 94,190)( 95,191)
( 96,192);
s1 := Sym(192)!( 13, 16)( 14, 17)( 15, 18)( 19, 22)( 20, 23)( 21, 24)( 37, 40)
( 38, 41)( 39, 42)( 43, 46)( 44, 47)( 45, 48)( 49, 55)( 50, 56)( 51, 57)
( 52, 58)( 53, 59)( 54, 60)( 61, 70)( 62, 71)( 63, 72)( 64, 67)( 65, 68)
( 66, 69)( 73, 79)( 74, 80)( 75, 81)( 76, 82)( 77, 83)( 78, 84)( 85, 94)
( 86, 95)( 87, 96)( 88, 91)( 89, 92)( 90, 93)( 97,109)( 98,110)( 99,111)
(100,112)(101,113)(102,114)(103,115)(104,116)(105,117)(106,118)(107,119)
(108,120)(121,133)(122,134)(123,135)(124,136)(125,137)(126,138)(127,139)
(128,140)(129,141)(130,142)(131,143)(132,144)(145,166)(146,167)(147,168)
(148,163)(149,164)(150,165)(151,160)(152,161)(153,162)(154,157)(155,158)
(156,159)(169,190)(170,191)(171,192)(172,187)(173,188)(174,189)(175,184)
(176,185)(177,186)(178,181)(179,182)(180,183);
s2 := Sym(192)!(  1, 73)(  2, 75)(  3, 74)(  4, 76)(  5, 78)(  6, 77)(  7, 79)
(  8, 81)(  9, 80)( 10, 82)( 11, 84)( 12, 83)( 13, 88)( 14, 90)( 15, 89)
( 16, 85)( 17, 87)( 18, 86)( 19, 94)( 20, 96)( 21, 95)( 22, 91)( 23, 93)
( 24, 92)( 25, 49)( 26, 51)( 27, 50)( 28, 52)( 29, 54)( 30, 53)( 31, 55)
( 32, 57)( 33, 56)( 34, 58)( 35, 60)( 36, 59)( 37, 64)( 38, 66)( 39, 65)
( 40, 61)( 41, 63)( 42, 62)( 43, 70)( 44, 72)( 45, 71)( 46, 67)( 47, 69)
( 48, 68)( 97,169)( 98,171)( 99,170)(100,172)(101,174)(102,173)(103,175)
(104,177)(105,176)(106,178)(107,180)(108,179)(109,184)(110,186)(111,185)
(112,181)(113,183)(114,182)(115,190)(116,192)(117,191)(118,187)(119,189)
(120,188)(121,145)(122,147)(123,146)(124,148)(125,150)(126,149)(127,151)
(128,153)(129,152)(130,154)(131,156)(132,155)(133,160)(134,162)(135,161)
(136,157)(137,159)(138,158)(139,166)(140,168)(141,167)(142,163)(143,165)
(144,164);
s3 := Sym(192)!(  1, 26)(  2, 25)(  3, 27)(  4, 29)(  5, 28)(  6, 30)(  7, 32)
(  8, 31)(  9, 33)( 10, 35)( 11, 34)( 12, 36)( 13, 38)( 14, 37)( 15, 39)
( 16, 41)( 17, 40)( 18, 42)( 19, 44)( 20, 43)( 21, 45)( 22, 47)( 23, 46)
( 24, 48)( 49, 74)( 50, 73)( 51, 75)( 52, 77)( 53, 76)( 54, 78)( 55, 80)
( 56, 79)( 57, 81)( 58, 83)( 59, 82)( 60, 84)( 61, 86)( 62, 85)( 63, 87)
( 64, 89)( 65, 88)( 66, 90)( 67, 92)( 68, 91)( 69, 93)( 70, 95)( 71, 94)
( 72, 96)( 97,122)( 98,121)( 99,123)(100,125)(101,124)(102,126)(103,128)
(104,127)(105,129)(106,131)(107,130)(108,132)(109,134)(110,133)(111,135)
(112,137)(113,136)(114,138)(115,140)(116,139)(117,141)(118,143)(119,142)
(120,144)(145,170)(146,169)(147,171)(148,173)(149,172)(150,174)(151,176)
(152,175)(153,177)(154,179)(155,178)(156,180)(157,182)(158,181)(159,183)
(160,185)(161,184)(162,186)(163,188)(164,187)(165,189)(166,191)(167,190)
(168,192);
poly := sub<Sym(192)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 
References : None.
to this polytope