Polytope of Type {2,4,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,6}*384a
if this polytope has a name.
Group : SmallGroup(384,17948)
Rank : 4
Schlafli Type : {2,4,6}
Number of vertices, edges, etc : 2, 16, 48, 24
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,4,6,2} of size 768
   {2,4,6,3} of size 1152
Vertex Figure Of :
   {2,2,4,6} of size 768
   {3,2,4,6} of size 1152
   {5,2,4,6} of size 1920
Quotients (Maximal Quotients in Boldface) :
   4-fold quotients : {2,4,6}*96c
   8-fold quotients : {2,4,3}*48
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,4,12}*768b, {2,4,12}*768c, {2,8,6}*768b, {2,8,6}*768c, {2,4,6}*768a
   3-fold covers : {2,4,18}*1152a
   5-fold covers : {2,4,30}*1920a
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 7, 9)( 8,10)(11,13)(12,14);;
s2 := ( 3, 7)( 4, 8)( 5,10)( 6, 9)(13,14);;
s3 := ( 7,11)( 8,12)( 9,13)(10,14);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s1*s2*s1*s2*s1*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s1*s2*s3*s2*s3*s1*s2*s3*s2*s3*s1*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(14)!(1,2);
s1 := Sym(14)!( 7, 9)( 8,10)(11,13)(12,14);
s2 := Sym(14)!( 3, 7)( 4, 8)( 5,10)( 6, 9)(13,14);
s3 := Sym(14)!( 7,11)( 8,12)( 9,13)(10,14);
poly := sub<Sym(14)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s1*s2*s3*s2*s3*s1*s2*s3*s2*s3*s1*s2*s3*s2*s3 >; 
 

to this polytope