Polytope of Type {3,6,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,6,2}*384
if this polytope has a name.
Group : SmallGroup(384,17949)
Rank : 4
Schlafli Type : {3,6,2}
Number of vertices, edges, etc : 16, 48, 32, 2
Order of s0s1s2s3 : 8
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {3,6,2,2} of size 768
   {3,6,2,3} of size 1152
   {3,6,2,5} of size 1920
Vertex Figure Of :
   {2,3,6,2} of size 768
Quotients (Maximal Quotients in Boldface) :
   4-fold quotients : {3,6,2}*96
   8-fold quotients : {3,3,2}*48
Covers (Minimal Covers in Boldface) :
   2-fold covers : {3,12,2}*768, {3,6,4}*768b, {6,6,2}*768d
   3-fold covers : {3,6,2}*1152, {3,6,6}*1152
   5-fold covers : {15,6,2}*1920, {3,6,10}*1920
Permutation Representation (GAP) :
s0 := ( 1, 9)( 2,10)( 3,11)( 4,12);;
s1 := ( 5, 9)( 6,10)( 7,12)( 8,11);;
s2 := ( 1,11)( 2,12)( 3, 9)( 4,10)( 5, 6);;
s3 := (13,14);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(14)!( 1, 9)( 2,10)( 3,11)( 4,12);
s1 := Sym(14)!( 5, 9)( 6,10)( 7,12)( 8,11);
s2 := Sym(14)!( 1,11)( 2,12)( 3, 9)( 4,10)( 5, 6);
s3 := Sym(14)!(13,14);
poly := sub<Sym(14)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1 >; 
 

to this polytope