Polytope of Type {4,12,2,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,12,2,2}*384b
if this polytope has a name.
Group : SmallGroup(384,20049)
Rank : 5
Schlafli Type : {4,12,2,2}
Number of vertices, edges, etc : 4, 24, 12, 2, 2
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {4,12,2,2,2} of size 768
   {4,12,2,2,3} of size 1152
   {4,12,2,2,5} of size 1920
Vertex Figure Of :
   {2,4,12,2,2} of size 768
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,6,2,2}*192c
   4-fold quotients : {4,3,2,2}*96
Covers (Minimal Covers in Boldface) :
   2-fold covers : {4,12,4,2}*768d, {4,12,2,4}*768b, {4,24,2,2}*768c, {4,24,2,2}*768d, {4,12,2,2}*768b
   3-fold covers : {4,36,2,2}*1152b, {4,12,2,6}*1152b, {4,12,6,2}*1152d, {4,12,6,2}*1152e
   5-fold covers : {4,12,2,10}*1920b, {4,12,10,2}*1920b, {4,60,2,2}*1920b
Permutation Representation (GAP) :
s0 := ( 1, 6)( 2,10)( 3,13)( 4,14)( 5,15)( 7,21)( 8,22)( 9,23)(11,27)(12,28)
(16,33)(17,34)(18,32)(19,35)(20,36)(24,45)(25,43)(26,41)(29,42)(30,44)(31,40)
(37,47)(38,48)(39,46);;
s1 := ( 2, 3)( 4, 5)( 6,16)( 8,12)( 9,11)(10,24)(13,29)(14,32)(15,17)(18,34)
(19,20)(21,37)(22,40)(23,30)(25,28)(26,44)(27,41)(31,43)(35,46)(36,38)(39,48)
(42,45);;
s2 := ( 1, 9)( 2, 5)( 3,20)( 4, 8)( 6,23)( 7,12)(10,15)(11,19)(13,36)(14,22)
(16,26)(17,43)(18,29)(21,28)(24,39)(25,34)(27,35)(30,48)(31,37)(32,42)(33,41)
(38,44)(40,47)(45,46);;
s3 := (49,50);;
s4 := (51,52);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s0*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(52)!( 1, 6)( 2,10)( 3,13)( 4,14)( 5,15)( 7,21)( 8,22)( 9,23)(11,27)
(12,28)(16,33)(17,34)(18,32)(19,35)(20,36)(24,45)(25,43)(26,41)(29,42)(30,44)
(31,40)(37,47)(38,48)(39,46);
s1 := Sym(52)!( 2, 3)( 4, 5)( 6,16)( 8,12)( 9,11)(10,24)(13,29)(14,32)(15,17)
(18,34)(19,20)(21,37)(22,40)(23,30)(25,28)(26,44)(27,41)(31,43)(35,46)(36,38)
(39,48)(42,45);
s2 := Sym(52)!( 1, 9)( 2, 5)( 3,20)( 4, 8)( 6,23)( 7,12)(10,15)(11,19)(13,36)
(14,22)(16,26)(17,43)(18,29)(21,28)(24,39)(25,34)(27,35)(30,48)(31,37)(32,42)
(33,41)(38,44)(40,47)(45,46);
s3 := Sym(52)!(49,50);
s4 := Sym(52)!(51,52);
poly := sub<Sym(52)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope