include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,6,2,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,6,2,2}*384
if this polytope has a name.
Group : SmallGroup(384,20162)
Rank : 5
Schlafli Type : {6,6,2,2}
Number of vertices, edges, etc : 8, 24, 8, 2, 2
Order of s0s1s2s3s4 : 4
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{6,6,2,2,2} of size 768
{6,6,2,2,3} of size 1152
{6,6,2,2,5} of size 1920
Vertex Figure Of :
{2,6,6,2,2} of size 768
{3,6,6,2,2} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,6,2,2}*192, {6,3,2,2}*192
4-fold quotients : {3,3,2,2}*96
12-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
2-fold covers : {6,6,2,4}*768, {6,6,4,2}*768, {6,12,2,2}*768a, {12,6,2,2}*768a, {6,12,2,2}*768b, {12,6,2,2}*768b, {6,6,2,2}*768b
3-fold covers : {6,6,2,2}*1152a, {6,6,2,2}*1152b, {6,6,2,6}*1152, {6,6,6,2}*1152b
5-fold covers : {6,6,2,10}*1920, {6,6,10,2}*1920, {6,30,2,2}*1920, {30,6,2,2}*1920
Permutation Representation (GAP) :
s0 := ( 8, 9)(11,12)(13,14)(15,16);;
s1 := ( 1, 2)( 3, 5)( 4,11)( 6, 8)( 7,15)( 9,12)(10,13)(14,16);;
s2 := ( 1, 7)( 2,10)( 3, 4)( 5, 6)( 8,13)( 9,14)(11,15)(12,16);;
s3 := (17,18);;
s4 := (19,20);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(20)!( 8, 9)(11,12)(13,14)(15,16);
s1 := Sym(20)!( 1, 2)( 3, 5)( 4,11)( 6, 8)( 7,15)( 9,12)(10,13)(14,16);
s2 := Sym(20)!( 1, 7)( 2,10)( 3, 4)( 5, 6)( 8,13)( 9,14)(11,15)(12,16);
s3 := Sym(20)!(17,18);
s4 := Sym(20)!(19,20);
poly := sub<Sym(20)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1 >;
to this polytope