include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {3,4,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,4,4}*384a
Also Known As : {{3,4}3,{4,4|4}}. if this polytope has another name.
Group : SmallGroup(384,5602)
Rank : 4
Schlafli Type : {3,4,4}
Number of vertices, edges, etc : 3, 24, 32, 16
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 4
Special Properties :
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{3,4,4,2} of size 768
Vertex Figure Of :
{2,3,4,4} of size 768
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,4,4}*192a
8-fold quotients : {3,4,2}*48
Covers (Minimal Covers in Boldface) :
2-fold covers : {3,4,8}*768b, {3,4,4}*768b, {6,4,4}*768c, {6,4,4}*768d
3-fold covers : {9,4,4}*1152a
5-fold covers : {15,4,4}*1920a
Permutation Representation (GAP) :
s0 := (3,5)(4,6);;
s1 := (5,7)(6,8);;
s2 := (1,7)(2,8)(3,5)(4,6);;
s3 := (3,4)(5,6)(7,8);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2, s2*s3*s2*s3*s2*s3*s2*s3,
s0*s2*s1*s0*s2*s1*s0*s2*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(8)!(3,5)(4,6);
s1 := Sym(8)!(5,7)(6,8);
s2 := Sym(8)!(1,7)(2,8)(3,5)(4,6);
s3 := Sym(8)!(3,4)(5,6)(7,8);
poly := sub<Sym(8)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1, s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3, s0*s2*s1*s0*s2*s1*s0*s2*s1 >;
References : None.
to this polytope