Polytope of Type {7,14,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {7,14,2}*392
if this polytope has a name.
Group : SmallGroup(392,41)
Rank : 4
Schlafli Type : {7,14,2}
Number of vertices, edges, etc : 7, 49, 14, 2
Order of s0s1s2s3 : 14
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {7,14,2,2} of size 784
   {7,14,2,3} of size 1176
   {7,14,2,4} of size 1568
   {7,14,2,5} of size 1960
Vertex Figure Of :
   {2,7,14,2} of size 784
Quotients (Maximal Quotients in Boldface) :
   7-fold quotients : {7,2,2}*56
Covers (Minimal Covers in Boldface) :
   2-fold covers : {7,14,4}*784, {14,14,2}*784c
   3-fold covers : {7,14,6}*1176, {21,14,2}*1176
   4-fold covers : {7,14,8}*1568, {28,14,2}*1568b, {14,14,4}*1568c, {14,28,2}*1568c
   5-fold covers : {7,14,10}*1960, {35,14,2}*1960
Permutation Representation (GAP) :
s0 := ( 2, 7)( 3, 6)( 4, 5)( 8,43)( 9,49)(10,48)(11,47)(12,46)(13,45)(14,44)
(15,36)(16,42)(17,41)(18,40)(19,39)(20,38)(21,37)(22,29)(23,35)(24,34)(25,33)
(26,32)(27,31)(28,30);;
s1 := ( 1, 9)( 2, 8)( 3,14)( 4,13)( 5,12)( 6,11)( 7,10)(15,44)(16,43)(17,49)
(18,48)(19,47)(20,46)(21,45)(22,37)(23,36)(24,42)(25,41)(26,40)(27,39)(28,38)
(29,30)(31,35)(32,34);;
s2 := ( 8,43)( 9,44)(10,45)(11,46)(12,47)(13,48)(14,49)(15,36)(16,37)(17,38)
(18,39)(19,40)(20,41)(21,42)(22,29)(23,30)(24,31)(25,32)(26,33)(27,34)
(28,35);;
s3 := (50,51);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(51)!( 2, 7)( 3, 6)( 4, 5)( 8,43)( 9,49)(10,48)(11,47)(12,46)(13,45)
(14,44)(15,36)(16,42)(17,41)(18,40)(19,39)(20,38)(21,37)(22,29)(23,35)(24,34)
(25,33)(26,32)(27,31)(28,30);
s1 := Sym(51)!( 1, 9)( 2, 8)( 3,14)( 4,13)( 5,12)( 6,11)( 7,10)(15,44)(16,43)
(17,49)(18,48)(19,47)(20,46)(21,45)(22,37)(23,36)(24,42)(25,41)(26,40)(27,39)
(28,38)(29,30)(31,35)(32,34);
s2 := Sym(51)!( 8,43)( 9,44)(10,45)(11,46)(12,47)(13,48)(14,49)(15,36)(16,37)
(17,38)(18,39)(19,40)(20,41)(21,42)(22,29)(23,30)(24,31)(25,32)(26,33)(27,34)
(28,35);
s3 := Sym(51)!(50,51);
poly := sub<Sym(51)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope