include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,10,5,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,10,5,2}*400
if this polytope has a name.
Group : SmallGroup(400,218)
Rank : 5
Schlafli Type : {2,10,5,2}
Number of vertices, edges, etc : 2, 10, 25, 5, 2
Order of s0s1s2s3s4 : 10
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,10,5,2,2} of size 800
{2,10,5,2,3} of size 1200
{2,10,5,2,4} of size 1600
{2,10,5,2,5} of size 2000
Vertex Figure Of :
{2,2,10,5,2} of size 800
{3,2,10,5,2} of size 1200
{4,2,10,5,2} of size 1600
{5,2,10,5,2} of size 2000
Quotients (Maximal Quotients in Boldface) :
5-fold quotients : {2,2,5,2}*80
Covers (Minimal Covers in Boldface) :
2-fold covers : {4,10,5,2}*800, {2,10,10,2}*800b
3-fold covers : {6,10,5,2}*1200, {2,10,15,2}*1200
4-fold covers : {8,10,5,2}*1600, {2,10,20,2}*1600b, {2,10,10,4}*1600b, {2,20,10,2}*1600c, {4,10,10,2}*1600c
5-fold covers : {2,10,25,2}*2000, {2,10,5,2}*2000, {2,10,5,10}*2000, {10,10,5,2}*2000b
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 6, 7)( 9,10)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25)(26,27);;
s2 := ( 3, 6)( 4,12)( 5, 9)( 7,14)( 8,20)(10,22)(11,16)(13,18)(17,26)(19,23)
(21,24)(25,27);;
s3 := ( 3, 4)( 5, 8)( 6,10)( 7, 9)(12,17)(13,16)(14,19)(15,18)(20,21)(22,25)
(23,24)(26,27);;
s4 := (28,29);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(29)!(1,2);
s1 := Sym(29)!( 6, 7)( 9,10)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25)
(26,27);
s2 := Sym(29)!( 3, 6)( 4,12)( 5, 9)( 7,14)( 8,20)(10,22)(11,16)(13,18)(17,26)
(19,23)(21,24)(25,27);
s3 := Sym(29)!( 3, 4)( 5, 8)( 6,10)( 7, 9)(12,17)(13,16)(14,19)(15,18)(20,21)
(22,25)(23,24)(26,27);
s4 := Sym(29)!(28,29);
poly := sub<Sym(29)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope