include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {12,2,9}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,2,9}*432
if this polytope has a name.
Group : SmallGroup(432,292)
Rank : 4
Schlafli Type : {12,2,9}
Number of vertices, edges, etc : 12, 12, 9, 9
Order of s0s1s2s3 : 36
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{12,2,9,2} of size 864
{12,2,9,4} of size 1728
Vertex Figure Of :
{2,12,2,9} of size 864
{4,12,2,9} of size 1728
{4,12,2,9} of size 1728
{4,12,2,9} of size 1728
{3,12,2,9} of size 1728
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,2,9}*216
3-fold quotients : {4,2,9}*144, {12,2,3}*144
4-fold quotients : {3,2,9}*108
6-fold quotients : {2,2,9}*72, {6,2,3}*72
9-fold quotients : {4,2,3}*48
12-fold quotients : {3,2,3}*36
18-fold quotients : {2,2,3}*24
Covers (Minimal Covers in Boldface) :
2-fold covers : {24,2,9}*864, {12,2,18}*864
3-fold covers : {36,2,9}*1296, {12,6,9}*1296a, {12,2,27}*1296, {12,6,9}*1296b
4-fold covers : {48,2,9}*1728, {12,2,36}*1728, {12,4,18}*1728, {24,2,18}*1728, {12,4,9}*1728
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 7,10)( 8, 9)(11,12);;
s1 := ( 1, 7)( 2, 4)( 3,11)( 5, 8)( 6, 9)(10,12);;
s2 := (14,15)(16,17)(18,19)(20,21);;
s3 := (13,14)(15,16)(17,18)(19,20);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(21)!( 2, 3)( 4, 5)( 7,10)( 8, 9)(11,12);
s1 := Sym(21)!( 1, 7)( 2, 4)( 3,11)( 5, 8)( 6, 9)(10,12);
s2 := Sym(21)!(14,15)(16,17)(18,19)(20,21);
s3 := Sym(21)!(13,14)(15,16)(17,18)(19,20);
poly := sub<Sym(21)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope