include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {3,2,2,18}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,2,18}*432
if this polytope has a name.
Group : SmallGroup(432,544)
Rank : 5
Schlafli Type : {3,2,2,18}
Number of vertices, edges, etc : 3, 3, 2, 18, 18
Order of s0s1s2s3s4 : 18
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{3,2,2,18,2} of size 864
{3,2,2,18,4} of size 1728
{3,2,2,18,4} of size 1728
{3,2,2,18,4} of size 1728
Vertex Figure Of :
{2,3,2,2,18} of size 864
{3,3,2,2,18} of size 1728
{4,3,2,2,18} of size 1728
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,2,2,9}*216
3-fold quotients : {3,2,2,6}*144
6-fold quotients : {3,2,2,3}*72
9-fold quotients : {3,2,2,2}*48
Covers (Minimal Covers in Boldface) :
2-fold covers : {3,2,2,36}*864, {3,2,4,18}*864a, {6,2,2,18}*864
3-fold covers : {9,2,2,18}*1296, {3,2,2,54}*1296, {3,2,6,18}*1296a, {3,2,6,18}*1296b, {3,6,2,18}*1296
4-fold covers : {3,2,4,36}*1728a, {3,2,2,72}*1728, {3,2,8,18}*1728, {12,2,2,18}*1728, {6,2,2,36}*1728, {6,2,4,18}*1728a, {6,4,2,18}*1728a, {3,4,2,18}*1728, {3,2,4,18}*1728
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := (4,5);;
s3 := ( 8, 9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23);;
s4 := ( 6,10)( 7, 8)( 9,14)(11,12)(13,18)(15,16)(17,22)(19,20)(21,23);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s1*s0*s1*s0*s1, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(23)!(2,3);
s1 := Sym(23)!(1,2);
s2 := Sym(23)!(4,5);
s3 := Sym(23)!( 8, 9)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23);
s4 := Sym(23)!( 6,10)( 7, 8)( 9,14)(11,12)(13,18)(15,16)(17,22)(19,20)(21,23);
poly := sub<Sym(23)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s1*s0*s1*s0*s1, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope