include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,3,2,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,3,2,2}*432
if this polytope has a name.
Group : SmallGroup(432,545)
Rank : 5
Schlafli Type : {6,3,2,2}
Number of vertices, edges, etc : 18, 27, 9, 2, 2
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{6,3,2,2,2} of size 864
{6,3,2,2,3} of size 1296
{6,3,2,2,4} of size 1728
Vertex Figure Of :
{2,6,3,2,2} of size 864
{3,6,3,2,2} of size 1296
{4,6,3,2,2} of size 1728
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {6,3,2,2}*144
9-fold quotients : {2,3,2,2}*48
Covers (Minimal Covers in Boldface) :
2-fold covers : {6,3,2,4}*864, {6,6,2,2}*864a
3-fold covers : {6,9,2,2}*1296a, {6,9,2,2}*1296b, {6,9,2,2}*1296c, {6,9,2,2}*1296d, {6,3,2,2}*1296, {18,3,2,2}*1296, {6,3,2,6}*1296, {6,3,6,2}*1296b
4-fold covers : {6,3,2,8}*1728, {6,12,2,2}*1728a, {6,6,2,4}*1728a, {6,6,4,2}*1728a, {12,6,2,2}*1728c, {6,3,2,2}*1728, {6,3,4,2}*1728, {12,3,2,2}*1728
Permutation Representation (GAP) :
s0 := (4,5)(6,7)(8,9);;
s1 := (2,6)(3,4)(5,7);;
s2 := (1,2)(4,8)(5,9);;
s3 := (10,11);;
s4 := (12,13);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(13)!(4,5)(6,7)(8,9);
s1 := Sym(13)!(2,6)(3,4)(5,7);
s2 := Sym(13)!(1,2)(4,8)(5,9);
s3 := Sym(13)!(10,11);
s4 := Sym(13)!(12,13);
poly := sub<Sym(13)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1 >;
to this polytope