include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,3,2,3,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,3,2,3,6}*432
if this polytope has a name.
Group : SmallGroup(432,759)
Rank : 6
Schlafli Type : {2,3,2,3,6}
Number of vertices, edges, etc : 2, 3, 3, 3, 9, 6
Order of s0s1s2s3s4s5 : 6
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,3,2,3,6,2} of size 864
{2,3,2,3,6,3} of size 1296
{2,3,2,3,6,4} of size 1728
Vertex Figure Of :
{2,2,3,2,3,6} of size 864
{3,2,3,2,3,6} of size 1296
{4,2,3,2,3,6} of size 1728
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {2,3,2,3,2}*144
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,3,2,6,6}*864c, {2,6,2,3,6}*864
3-fold covers : {2,3,2,9,6}*1296, {2,9,2,3,6}*1296, {2,3,2,3,6}*1296, {2,3,6,3,6}*1296, {6,3,2,3,6}*1296
4-fold covers : {2,3,2,12,6}*1728b, {2,12,2,3,6}*1728, {4,6,2,3,6}*1728a, {2,3,2,6,12}*1728c, {2,3,2,3,6}*1728, {2,3,2,3,12}*1728, {4,3,2,3,6}*1728, {2,6,2,6,6}*1728c
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (4,5);;
s2 := (3,4);;
s3 := ( 7, 8)( 9,10)(11,14)(12,13);;
s4 := ( 6,11)( 7, 9)( 8,13)(10,12);;
s5 := ( 9,10)(11,12)(13,14);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s1*s2*s1*s2*s1*s2, s3*s4*s3*s4*s3*s4,
s5*s3*s4*s5*s4*s5*s3*s4*s5*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(14)!(1,2);
s1 := Sym(14)!(4,5);
s2 := Sym(14)!(3,4);
s3 := Sym(14)!( 7, 8)( 9,10)(11,14)(12,13);
s4 := Sym(14)!( 6,11)( 7, 9)( 8,13)(10,12);
s5 := Sym(14)!( 9,10)(11,12)(13,14);
poly := sub<Sym(14)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s1*s2*s1*s2*s1*s2, s3*s4*s3*s4*s3*s4,
s5*s3*s4*s5*s4*s5*s3*s4*s5*s4 >;
to this polytope