include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,5,10,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,5,10,2}*480b
if this polytope has a name.
Group : SmallGroup(480,1187)
Rank : 5
Schlafli Type : {2,5,10,2}
Number of vertices, edges, etc : 2, 6, 30, 12, 2
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,5,10,2,2} of size 960
{2,5,10,2,3} of size 1440
{2,5,10,2,4} of size 1920
Vertex Figure Of :
{2,2,5,10,2} of size 960
{3,2,5,10,2} of size 1440
{4,2,5,10,2} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,5,5,2}*240
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,5,10,4}*960, {2,5,10,2}*960, {2,10,10,2}*960a, {2,10,10,2}*960b
3-fold covers : {2,5,10,6}*1440
4-fold covers : {2,5,10,8}*1920, {2,5,10,4}*1920, {2,10,10,4}*1920a, {2,10,10,4}*1920b, {2,10,20,2}*1920a, {2,10,20,2}*1920b, {4,10,10,2}*1920a, {2,10,10,2}*1920, {2,5,20,2}*1920
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 3, 5)( 4,10)( 6,14)( 7, 9)( 8,11)(12,13);;
s2 := ( 3, 6)( 4, 9)( 5,13)( 7,12)( 8,11)(10,14);;
s3 := ( 4,11)( 6,14)( 7, 9)( 8,10);;
s4 := (15,16);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s2*s1*s2*s3*s2*s3*s2*s3*s2*s1*s2*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(16)!(1,2);
s1 := Sym(16)!( 3, 5)( 4,10)( 6,14)( 7, 9)( 8,11)(12,13);
s2 := Sym(16)!( 3, 6)( 4, 9)( 5,13)( 7,12)( 8,11)(10,14);
s3 := Sym(16)!( 4,11)( 6,14)( 7, 9)( 8,10);
s4 := Sym(16)!(15,16);
poly := sub<Sym(16)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, s3*s2*s1*s2*s3*s2*s3*s2*s3*s2*s1*s2*s1 >;
to this polytope