Polytope of Type {10,5,2,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,5,2,2}*480a
if this polytope has a name.
Group : SmallGroup(480,1187)
Rank : 5
Schlafli Type : {10,5,2,2}
Number of vertices, edges, etc : 12, 30, 6, 2, 2
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {10,5,2,2,2} of size 960
   {10,5,2,2,3} of size 1440
   {10,5,2,2,4} of size 1920
Vertex Figure Of :
   {2,10,5,2,2} of size 960
   {4,10,5,2,2} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {5,5,2,2}*240
Covers (Minimal Covers in Boldface) :
   2-fold covers : {10,5,2,4}*960a, {10,5,2,2}*960, {10,10,2,2}*960b, {10,10,2,2}*960c
   3-fold covers : {10,5,2,6}*1440a
   4-fold covers : {10,5,2,8}*1920a, {10,5,2,4}*1920, {10,10,2,4}*1920b, {10,10,2,4}*1920c, {10,10,4,2}*1920b, {20,10,2,2}*1920a, {20,10,2,2}*1920b, {10,10,2,2}*1920, {20,5,2,2}*1920
Permutation Representation (GAP) :
s0 := ( 2, 9)( 4,12)( 5, 7)( 6, 8);;
s1 := ( 1, 2)( 3,11)( 4, 5)( 6,12)( 7, 9)( 8,10);;
s2 := ( 1,11)( 2, 9)( 3,10)( 4, 5)( 6, 8)( 7,12);;
s3 := (13,14);;
s4 := (15,16);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s2*s1*s0*s2*s1*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(16)!( 2, 9)( 4,12)( 5, 7)( 6, 8);
s1 := Sym(16)!( 1, 2)( 3,11)( 4, 5)( 6,12)( 7, 9)( 8,10);
s2 := Sym(16)!( 1,11)( 2, 9)( 3,10)( 4, 5)( 6, 8)( 7,12);
s3 := Sym(16)!(13,14);
s4 := Sym(16)!(15,16);
poly := sub<Sym(16)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s2*s1*s0*s2*s1*s2*s1 >; 
 

to this polytope