include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {10,12}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,12}*480d
if this polytope has a name.
Group : SmallGroup(480,956)
Rank : 3
Schlafli Type : {10,12}
Number of vertices, edges, etc : 20, 120, 24
Order of s0s1s2 : 20
Order of s0s1s2s1 : 10
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{10,12,2} of size 960
{10,12,4} of size 1920
Vertex Figure Of :
{2,10,12} of size 960
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {10,6}*240c
4-fold quotients : {5,6}*120c, {10,3}*120b
8-fold quotients : {5,3}*60
Covers (Minimal Covers in Boldface) :
2-fold covers : {10,12}*960c
3-fold covers : {10,12}*1440f
4-fold covers : {20,12}*1920g, {10,24}*1920d, {10,12}*1920c, {20,12}*1920k, {10,24}*1920f
Permutation Representation (GAP) :
s0 := (1,4)(2,3)(6,7)(8,9);;
s1 := (2,3)(5,6)(7,8);;
s2 := (1,2)(3,4)(6,9)(7,8);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1,
s1*s2*s1*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s0,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(9)!(1,4)(2,3)(6,7)(8,9);
s1 := Sym(9)!(2,3)(5,6)(7,8);
s2 := Sym(9)!(1,2)(3,4)(6,9)(7,8);
poly := sub<Sym(9)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1,
s1*s2*s1*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s0,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope