Polytope of Type {4,10,5}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,10,5}*480
if this polytope has a name.
Group : SmallGroup(480,956)
Rank : 4
Schlafli Type : {4,10,5}
Number of vertices, edges, etc : 4, 24, 30, 6
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {4,10,5,2} of size 960
Vertex Figure Of :
   {2,4,10,5} of size 960
   {4,4,10,5} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,10,5}*240a
   4-fold quotients : {2,5,5}*120
Covers (Minimal Covers in Boldface) :
   2-fold covers : {8,10,5}*960, {4,10,5}*960, {4,10,10}*960a, {4,10,10}*960b
   3-fold covers : {12,10,5}*1440
   4-fold covers : {16,10,5}*1920, {4,20,10}*1920a, {4,20,10}*1920b, {8,10,5}*1920, {8,10,10}*1920a, {8,10,10}*1920b, {4,10,10}*1920, {4,20,5}*1920
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2)(3,4)(6,7)(8,9);;
s2 := (5,6)(7,8);;
s3 := (6,8)(7,9);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2*s3*s2*s1*s3*s2*s3*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(9)!(2,3);
s1 := Sym(9)!(1,2)(3,4)(6,7)(8,9);
s2 := Sym(9)!(5,6)(7,8);
s3 := Sym(9)!(6,8)(7,9);
poly := sub<Sym(9)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s3*s2*s1*s3*s2*s3*s2 >; 
 
References : None.
to this polytope