Polytope of Type {3,5,2,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,5,2,4}*480
if this polytope has a name.
Group : SmallGroup(480,956)
Rank : 5
Schlafli Type : {3,5,2,4}
Number of vertices, edges, etc : 6, 15, 10, 4, 4
Order of s0s1s2s3s4 : 20
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {3,5,2,4,2} of size 960
   {3,5,2,4,3} of size 1440
   {3,5,2,4,4} of size 1920
Vertex Figure Of :
   {2,3,5,2,4} of size 960
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {3,5,2,2}*240
Covers (Minimal Covers in Boldface) :
   2-fold covers : {3,5,2,8}*960, {3,5,2,4}*960, {3,10,2,4}*960a, {3,10,2,4}*960b, {6,5,2,4}*960b, {6,5,2,4}*960c
   3-fold covers : {3,5,2,12}*1440
   4-fold covers : {3,5,2,16}*1920, {3,10,4,4}*1920, {3,5,2,8}*1920, {3,10,2,8}*1920a, {3,10,2,8}*1920b, {6,5,2,8}*1920b, {6,5,2,8}*1920c, {3,10,2,4}*1920, {6,5,2,4}*1920b, {6,10,2,4}*1920c, {6,10,2,4}*1920d, {6,10,2,4}*1920e, {6,10,2,4}*1920f
Permutation Representation (GAP) :
s0 := (2,3)(4,5);;
s1 := (1,2)(4,5);;
s2 := (2,4)(3,5);;
s3 := (7,8);;
s4 := (6,7)(8,9);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s0*s1*s0*s1*s0*s1, s3*s4*s3*s4*s3*s4*s3*s4, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, s1*s0*s1*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(9)!(2,3)(4,5);
s1 := Sym(9)!(1,2)(4,5);
s2 := Sym(9)!(2,4)(3,5);
s3 := Sym(9)!(7,8);
s4 := Sym(9)!(6,7)(8,9);
poly := sub<Sym(9)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1, 
s3*s4*s3*s4*s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s0*s1*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s2 >; 
 

to this polytope