include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,2,3,5}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,2,3,5}*480
if this polytope has a name.
Group : SmallGroup(480,956)
Rank : 5
Schlafli Type : {4,2,3,5}
Number of vertices, edges, etc : 4, 4, 6, 15, 10
Order of s0s1s2s3s4 : 20
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{4,2,3,5,2} of size 960
Vertex Figure Of :
{2,4,2,3,5} of size 960
{3,4,2,3,5} of size 1440
{4,4,2,3,5} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,3,5}*240
Covers (Minimal Covers in Boldface) :
2-fold covers : {8,2,3,5}*960, {4,2,3,5}*960, {4,2,3,10}*960a, {4,2,3,10}*960b, {4,2,6,5}*960b, {4,2,6,5}*960c
3-fold covers : {12,2,3,5}*1440
4-fold covers : {16,2,3,5}*1920, {4,4,6,5}*1920b, {8,2,3,5}*1920, {8,2,3,10}*1920a, {8,2,3,10}*1920b, {8,2,6,5}*1920b, {8,2,6,5}*1920c, {4,2,3,10}*1920, {4,2,6,5}*1920b, {4,2,6,10}*1920c, {4,2,6,10}*1920d, {4,2,6,10}*1920e, {4,2,6,10}*1920f
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2)(3,4);;
s2 := (6,7)(8,9);;
s3 := (5,6)(8,9);;
s4 := (6,8)(7,9);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, s3*s2*s3*s4*s3*s2*s4*s3*s2*s4*s3*s2*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(9)!(2,3);
s1 := Sym(9)!(1,2)(3,4);
s2 := Sym(9)!(6,7)(8,9);
s3 := Sym(9)!(5,6)(8,9);
s4 := Sym(9)!(6,8)(7,9);
poly := sub<Sym(9)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s3*s2*s3*s4*s3*s2*s4*s3*s2*s4*s3*s2*s4*s3*s4 >;
to this polytope